MFMOS Capacitor with Pb5Ge3O11 Thin Film for One Transistor Ferroelectric Memory Applications

1999 ◽  
Vol 596 ◽  
Author(s):  
T. K. Li ◽  
S. T. Hsu ◽  
J. J. Lee ◽  
Y. F. Gao ◽  
M. Engelhard

AbstractA ferroelectric Pb5Ge3O11 thin film with a low dielectric constant is proposed for application in one transistor ferroelectric memories. A strong depolarization voltage on the ferroelectric capacitor with MIFSFET structures diminishes the remanent polarization significantly and, therefore, the low dielectric constant becomes very important to widen the memory window. A memory window of 3V was estimated for the MFMOS memory structure with 2000Å ferroelectric Pb5Ge3O11 and a 100Å gate oxide. In the second part of this paper, Pb5Ge3O11 films deposited on Ir/Ti/SiO2/Si substrates, by using MOCVD system, was demonstrated. Germanium ethoxide, Ge(OC2H5)4, and lead bis-tetramethylheptadione, Pb(thd)2, were used as the MOCVD precursors. The film composition, phase formation, microstructure and ferroelectric properties are reported. The c-axis oriented Pb5Ge3O11 thin films prepared by MOCVD and RTP post-annealing showed a square ferroelectric hysteresis loop with Pr of 2.83 μC/cm2 and EC of 49 kV/cm. A low leakage current of 7.5 × 10−7 A/cm2 at 100 kV/cm and low dielectric constant of 41 were also demonstrated.

2003 ◽  
Vol 766 ◽  
Author(s):  
Jin-Heong Yim ◽  
Jung-Bae Kim ◽  
Hyun-Dam Jeong ◽  
Yi-Yeoul Lyu ◽  
Sang Kook Mah ◽  
...  

AbstractPorous low dielectric films containing nano pores (∼20Å) with low dielectric constant (<2.2), have been prepared by using various kinds of cyclodextrin derivatives as porogenic materials. The pore structure such as pore size and interconnectivity can be controlled by changing functional groups of the cyclodextrin derivatives. We found that mechanical properties of porous low-k thin film prepared with mCSSQ (modified cyclic silsesquioxane) precursor and cyclodextrin derivatives were correlated with the pore interconnection length. The longer the interconnection length of nanopores in the thin film, the worse the mechanical properties of the thin film (such as hardness and modulus) even though the pore diameter of the films were microporous (∼2nm).


Langmuir ◽  
2004 ◽  
Vol 20 (16) ◽  
pp. 6658-6667 ◽  
Author(s):  
Ronald C. Hedden ◽  
Hae-Jeong Lee ◽  
Christopher L. Soles ◽  
Barry J. Bauer

2004 ◽  
Vol 449-452 ◽  
pp. 477-480
Author(s):  
J.H. Choi ◽  
Tae Sung Oh

Ferroelectric characteristics of the 400 nm-thick SrxBi2.4Ta2O9(0.7≤x≤1.3) thin films processed by metalorganic decomposition were investigated, and electrical properties of the Pt/Sr0.85Bi2.4Ta2O9/TiO2/Si structure prepared using TiO2 buffer layer were characterized. The Sr-deficient SrxBi2.4Ta2O9 films exhibited well-developed ferroelectric hysteresis curves compared to those of the Sr-excess films. The Sr0.85Bi2.4Ta2O9 film exhibited optimum ferroelectric properties, such as high remanent polarization and low leakage current density, among SrxBi2.4Ta2O9 films. A memory window of the Pt/SrxBi2.4Ta2O9/TiO2/Si structure was dependent upon the coercive field of the SrxBi2.4Ta2O9 film, and the Pt/SrxBi2.4Ta2O9/TiO2/Si exhibited a maximum memory window of 1.3 V at the sweeping voltage of ±5 V.


1995 ◽  
Vol 381 ◽  
Author(s):  
Y.K. Lee ◽  
S.P. Murarka ◽  
S. -P. Jeng ◽  
B. Auman

AbstractLow dielectric constant interlayer dielectric ( ILD) materials are required for the advanced silicon integrated electronics such as those in the ULSI era[3, 10]. We have investigated several such materials. In this paper the results of our investigations of the materials and electrical properties, processing ( to form ILD ), and applicability of a DuPont fluorinated polyimide are described and discussed. Weight loss, FTIR, and ellipsometric measurements have been carried out. The DuPont fluorinated polyimide thin film was observed to be thermally stable up to 450°C, which is monitored by using dynamic TGA with a ramping rate of 10°C/min or 5°C/min in N2 Ambient. Also MIPOS capacitor characterization, effect of temperature and moisture on these properties have been determined. The dielectric constant was observed to be as low as 2.5 and the refractive index is around 1.63, both being stable up to 450°C. However, the DuPont Fluorinated polyimide exhibited a flat band voltage shift on C-V curve after 400°C annealing in vacuum environments for 1 hr. Compatibility with copper as the interconnecting metal has been determined and discussed[8]. It is concluded that this polymer is a possible candidate for ILD application.


Coatings ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 502
Author(s):  
Zhi-Yong Wu ◽  
Cai-Bin Ma

Bismuth ferrite (BiFeO3) has proven to be promising for a wide variety of microelectric and magnetoelectric devices applications. In this work, a dense (Ba0.65Sr0.35)TiO3(BST)/(Bi0.875Nd0.125)FeO3(BNF)/BST trilayered thin film grown on Pt-coated Si (100) substrates was developed by the rf-sputtering. For comparison, single-layered BNF and BST were also prepared on the same substrates, respectively. The results show that the dielectric loses suppression in BST/BNF/BST trilayered thin films at room temperature but has enhanced ferromagnetic and ferroelectric properties. The remnant polarization (Pr) and coercive electronic field (Ec) were 5.51 μC/cm2 and 18.3 kV/cm, and the remnant magnetization (Mr) and coercive magnetic field (Hc) were 10.1 emu/cm3 and 351 Oe, respectively, for the trilayered film. We considered that the bismuth’s volatilization was limited by BST bottom layers making the Bi/Fe in good station, and the action of BST layer in the charge transfer between BNF thin film and electrode led to the quite low leakage current and enhanced multiferroic property. The origin of the mechanism of the highly enhanced dielectric constant and decreased loss tanδ was discussed.


Sign in / Sign up

Export Citation Format

Share Document