Integrated Thin Film Capacitor Arrays Utilizing Sol-Gel Derived Ferroelectrics

1999 ◽  
Vol 596 ◽  
Author(s):  
David Liu ◽  
Steve Makl ◽  
Robert H. Heistand

AbstractNiobium-doped lead zircomate titanate (PNZT) thin film dielectric material has been produced on a large scale using a thick-coating sol-gel process. The material has been applied to the fabrication of commercial integrated capacitor array devices. Compared to conventional processes, this low-cost, long-shelf-life procedure had at least a 4-fold processing time enhancement. The specific capacitance of 2500 nF/cm2 and integrated density of over 200 component/cm2 have been demonstrated. The frequency domain capacitance measurement of integrated PNZT capacitors exhibits a frequency-independent behavior up to 2 GHz when a DC bias is applied. Leakage-voltage dependence follows the space-charge-limited-current (SCLC) mechanism. The fabricated integrated capacitor arrays pass the industrial standard of reliability for discrete multilayer capacitors.

Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1099
Author(s):  
Ye-Ji Han ◽  
Se Hyeong Lee ◽  
So-Young Bak ◽  
Tae-Hee Han ◽  
Sangwoo Kim ◽  
...  

Conventional sol-gel solutions have received significant attention in thin-film transistor (TFT) manufacturing because of their advantages such as simple processing, large-scale applicability, and low cost. However, conventional sol-gel processed zinc tin oxide (ZTO) TFTs have a thermal limitation in that they require high annealing temperatures of more than 500 °C, which are incompatible with most flexible plastic substrates. In this study, to overcome the thermal limitation of conventional sol-gel processed ZTO TFTs, we demonstrated a ZTO TFT that was fabricated at low annealing temperatures of 350 °C using self-combustion. The optimized device exhibited satisfactory performance, with μsat of 4.72 cm2/V∙s, Vth of −1.28 V, SS of 0.86 V/decade, and ION/OFF of 1.70 × 106 at a low annealing temperature of 350 °C for one hour. To compare a conventional sol-gel processed ZTO TFT with the optimized device, thermogravimetric and differential thermal analyses (TG-DTA) and X-ray photoelectron spectroscopy (XPS) were implemented.


2021 ◽  
Vol 23 (09) ◽  
pp. 1078-1085
Author(s):  
A. Kanni Raj ◽  

Indium Lead Oxide (ILO) based Metal Oxide Thin Film Transistor (MOTFT) is fabricated with Lead Barium Zirconate (PBZ) gate dielectric. PBZ is formed over doped silicon substrate by cheap sol-gel process. Thin film PBZ is analysed with X-ray Diffraction (XRD), Ultra-Violet Visible Spectra (UV-Vis) and Atomic Force Microscope (AFM). IZO is used as bottom gate to contact Thin Film Transistor (TFT). This device needs only 5V as operating voltage, and so is good for lower electronics <40V. It shows excellent emobility 4.5cm2/V/s, with on/off ratio 5×105 and sub-threshold swing 0.35V/decade.


2013 ◽  
Vol 832 ◽  
pp. 310-315
Author(s):  
R. Ahmad ◽  
M.S. Shamsudin ◽  
M. Salina ◽  
S.M. Sanip ◽  
M. Rusop ◽  
...  

MgZnO thin films are proposed as a new dielectric material for 1 GHz monolithic microwave integrated circuit (MMIC) applications. The high permittivity of this material enables size reduction; furthermore this can be fabricated using a low cost processing method. In this work, MgZnO/Pt/Si thin films were synthesized using a sol-gel spin coating method. The samples were annealed at various temperatures with the effects on physical and electrical properties investigated at direct current (DC) and high frequencies. The physical properties of MgZnO thin film were analyzed using X-Ray diffraction, with the improvements shown in crystalline structure and grain size with increasing temperature up to 700 °C. DC resistivity of 77 Ωcm at higher annealing temperature obtained using a four point probe station. In order to prove the feasibility at high frequencies, a test structure consisting of a 50 Ω transmission line and capacitors with 50 × 50 μm electrode area were patterned on the films using electron beam lithography. The radio frequency (RF) properties were measured using aWiltron 37269Avector network analyzer andCascade Microtechon-wafer probes measured over a frequency range of 0.5 to 3 GHz. The dielectric constant, loss tangent and return loss, S11improve with the increment annealing temperature. The dielectric constant was found to be 18.8, with loss tangent of 0.02 at 1 GHz. These give a corresponding size reduction of ten times compared to conventional dielectrics, silicon nitride (Si3N4). These indicate that the material is suitable to be implemented as a new dielectric material for 1GHz MMIC applications.


2010 ◽  
Vol 25 (4) ◽  
pp. 695-700 ◽  
Author(s):  
Young Hwan Hwang ◽  
Seok-Jun Seo ◽  
Byeong-Soo Bae

Thin-film transistors (TFTs) with zinc oxide channel layers were fabricated through a simple and low-cost solution process. Precursor solution concentration, annealing temperature, and the process were controlled for the purpose of improving the electrical properties of ZnO TFTs and analyzed in terms of microstructural scope. The fabricated ZnO films show preferential orientation of the (002) plane, which contributes to enhanced electron conduction and a dense surface. The results show that the TFT characteristics of the film are clearly affected by the microstructure. The optimized TFT operates in a depletion mode, shows n-type semiconductor behavior, and is highly transparent (>90%) within the visible light range. It exhibits a channel mobility of 9.4 cm2/V·s, a subthreshold slope of 3.3 V/decade, and an on-to-off current ratio greater than 105. In addition, the result of N2 annealing shows the possibility of improvement in electrical property of the ZnO TFTs.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012043
Author(s):  
S S Hegde ◽  
K Ramesh

Abstract Photovoltaics (PV) have become increasingly popular and reached as the third-largest renewable energy source. Thin-film solar cells made from earth-abundant, inexpensive and environmentally friendly materials are needed to replace the current PV technologies whose large-scale applications are limited by material and/or resource constraints. Near optimum direct optical bandgap of 1.3 eV, high absorption coefficient (>104 cm−1), less toxic, and abundant raw resources along with considerable scalability have made tin sulfide (SnS) as a strategic choice for next-generation PVs. In this review, limitations of leading commercial PV technologies and the status of a few alternate low-cost PV materials are outlined. Recent literature on crucial physical properties of SnS thin-films and the present status of SnS thin-film-based solar cells are discussed. Deficiency and adequacy of some of the key properties of SnS including carrier mobility (μ), minority carrier lifetime (τ), and absorption coefficient (α) are discussed in comparison of existing commercial solar cell materials. Future research trends on SnS based solar cells to enhance their conversion efficiencies towards the theoretical maximum of 24% from present ~5% and its prospectus as next-generation solar cell is also discussed.


Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1393 ◽  
Author(s):  
Qing Wang ◽  
Jieyi Xiong ◽  
Guangxue Chen ◽  
Ouyang Xinping ◽  
Zhaohui Yu ◽  
...  

Papers with nanoscaled surface roughness and hydrophobically modification have been widely used in daily life. However, the relatively complex preparation process, high costs and harmful compounds have largely limited their applications. This research aims to fabricate superhydrophobic papers with low cost and nontoxic materials. The surface of cellulose fibers was initially coated with a film of SiO2 nanoparticles via sol-gel process. After papermaking and subsequent modification with hexadecyltrimethoxysilane through a simple solution-immersion process, the paper showed excellent superhydrophobic properties, with water contact angles (WCA) larger than 150°. Moreover, the prepared paper also showed superior mechanical durability against 10 times of deformation. The whole preparation process was carried out in a mild environment, with no intricate instruments or toxic chemicals, which has the potential of large-scale industrial production and application.


2020 ◽  
Vol 301 ◽  
pp. 35-42
Author(s):  
Nabihah Kasim ◽  
Zainuriah Hassan ◽  
Way Foong Lim ◽  
Sabah M. Mohammad ◽  
Hock Jin Quah

In this work, ZnO thin films were prepared by the low-cost sol-gel deposition method onto six different substrates (glass, ITO coated glass, sapphire (Al2O3), p-Si, p-GaN and polyethylene terephthalate (PET)) to study the effects of these substrates on the morphological and structural properties of the produced films. Precursor solution is Zinc acetate dihydrate based dissolved in ethanol with monoethanolamine (C2H7NO) added to act as a stabilizing agent to the sol. The corresponding ZnO thin films were characterized using field emission scanning electron microscopy (FESEM), high resolution X-ray diffraction (XRD) and atomic force microscopy (AFM). Results revealed distinct morphological and structural properties of ZnO thin films deposited on each substrate. The most uniform morphology was identified on glass, owing to the acquisition of the averagely stable grain sizes (58 nm – 61 nm) and thin film thicknesses (280 nm – 325 nm). High resolution XRD analysis showed that the films deposited on glass, ITO, p-Si, and p-GaN were attributed to hexagonal crystallite structures while the films deposited on sapphire and PET substrates exhibited amorphous phases. Amongst the samples, the ZnO thin film spin coated on p-Si demonstrated preferred orientation in (002) direction.


Author(s):  
Lizhai Pei ◽  
Chunhu Yu ◽  
Zeyang Xue ◽  
Yong Zhang

Background: Bismuth-containing nanoscale materials exhibit great application potential in catalysts, optical devices, electron devices, photo-electric devices and sensors owing to their good catalytic, optical, electric, photoelectric and sensing performance. Special research interest has been devoted to ternary bismuthate nanoscale materials due to their special layered structure, large specific surface area, excellent optical, catalytic, electrical and electrochemical performance. Therefore, it is essential to synthesize novel ternary bismuthate nanoscale materials for practical application. Methods: The article reviews the recent progress and patents on the ternary bismuthate nanoscale materials. The recent progress and patents on the synthesis and application of the ternary bismuthate nanoscale materials are discussed. The possible development direction of the ternary bismuthate nanoscale materials for the synthesis and application is also analyzed. Results: The ternary bismuthate nanoscale materials including zinc bismuthate, copper bismuthate, barium bismuthate, silver bismuthate, sodium bismuthate, lanthanum bismuthate nanoscale materials can be synthesized by hydrothermal route, sol-gel route, solvothermal decomposition route and ion-exchange method et al. The ternary bismuthate nanoscale materials exhibit great application promising in the fields of photocatalysts, sensors and batteries et al. Conclusion: Large-scale synthesis of ternary bismuthate nanoscale materials at low cost, doping and combination using different nanoscale materials are important research directions for future research.


Sign in / Sign up

Export Citation Format

Share Document