Processing, Characterization and Reliability of Silica Xerogel Films for Interlayer Dielectric Applications

2000 ◽  
Vol 612 ◽  
Author(s):  
Anurag Jain ◽  
Svetlana Rogojevic ◽  
Feng Wang ◽  
William N. Gill ◽  
Peter C. Wayner ◽  
...  

AbstractSurface modified silica xerogel films of high porosity (25-90 %) and uniform thickness (0.4-2 µm) were fabricated at ambient pressure on silicon and other substrates. Mechanical reliability of the films was determined by measuring fracture toughness (adhesive) as a function of aging time and temperature using the modified edge-lift-off technique. There is an optimum aging time at 60 °C aging to obtain maximum fracture toughness for the procedure used here.Cu/xerogel/Si and Ta/xerogel/Si structures were annealed at different temperatures and in different ambient environments were analyzed using RBS and optical microscopy to assess the extent of interaction with the xerogel film. When annealed in N2 with trace amounts of O2 (equivalent to 10-7-10-6 Torr vacuum), RBS analysis does not show diffusion of Cu or Ta through the xerogel up to 450 °C. At higher temperatures, or in the presence of larger concentrations of O2, Cu and Ta oxidize. Cu oxidation leads to significant diffusion through the xerogel. Ta oxidation also results in diffusion-like RBS spectra. Using the micron-size ion beam to probe the Ta surface, this was found to be solely due to buckling of Ta films on xerogel. A thin SiNx layer on top of Cu and Ta prevents metal oxidation up to 640 °C, Cu diffusion, and Ta buckling.

1999 ◽  
Vol 565 ◽  
Author(s):  
Anurag Jain ◽  
Svetlana Rogojevic ◽  
Satya V. Nitta ◽  
Venumadhav Pisupatti ◽  
William N. Gill ◽  
...  

AbstractSurface modified silica xerogel films of high porosity (60 - 90 %) and uniform thickness (0.4–2 μm) were fabricated at ambient pressure on silicon and silicon dioxide. The rheological properties that govern film uniformity were determined. A relation between the final dried film thickness and spin speed was developed. The porosity and thickness of the films could be controlled independently. The same porosity could be obtained over a wide range of aging time and temperature combinations. Fracture toughness was measured using the edge-lift-off technique. The best values were comparable to concrete. Surface modification was affected by treating the film with trimethylcholorosilane (TMCS) and other modifiers. Moisture adsorption was studied at 100% RH using a quartz crystal microbalance technique. Depending upon the degree and kind of surface treatment, films absorbed as much as 32% or as little as 2% of their weight in water. Dielectric constants (K), losses and breakdown strengths were comparable to values for calcined, bulk aerogels. Thin (≤ 500 Å) films of Copper (Cu) and Tantalum (Ta) were deposited on xerogel films and subjected to thermal annealing. No diffusion was observed within the limits of RBS. High-density plasma etching showed that the films etch an order of magnitude faster than conventional SiO2 films.


1998 ◽  
Vol 511 ◽  
Author(s):  
S. Nitta ◽  
A. Jain ◽  
V. Pisupatti ◽  
W. N. Gill ◽  
P. C. Wayner ◽  
...  

ABSTRACTXerogel films of high porosity were fabricated using an ambient pressure technique. The same porosity can be obtained with different microstructures by varying the aging time of the films. The dielectric constant of these films as a function of porosity at 1 MHz follows correlations originally developed for bulk aerogels. Diffusion of copper is orders of magnitude faster in these xerogels than in the corresponding thermal oxide. An activation energy of 0.9 eV was estimated based on a convective diffusion model.


2013 ◽  
Vol 1530 ◽  
Author(s):  
A. Bendavid ◽  
L. Wieczorek ◽  
R. Chai ◽  
J. S. Cooper ◽  
B. Raguse

ABSTRACTA large area nanogap electrode fabrication method combinig conventional lithography patterning with the of focused ion beam (FIB) is presented. Lithography and a lift-off process were used to pattern 50 nm thick platinum pads having an area of 300 μm × 300 μm. A range of 30-300 nm wide nanogaps (length from 300 μm to 10 mm ) were then etched using an FIB of Ga+ at an acceleration voltage of 30 kV at various beam currents. An investigation of Ga+ beam current ranging between 1-50 pA was undertaken to optimise the process for the current fabrication method. In this study, we used Monte Carlo simulation to calculate the damage depth in various materials by the Ga+. Calculation of the recoil cascades of the substrate atoms are also presented. The nanogap electrodes fabricated in this study were found to have empty gap resistances exceeding several hundred MΩ. A comparison of the gap length versus electrical resistance on glass substrates is presented. The results thus outline some important issues in low-conductance measurements. The proposed nanogap fabrication method can be extended to various sensor applications, such as chemical sensing, that employ the nanogap platform. This method may be used as a prototype technique for large-scale fabrication due to its simple, fast and reliable features.


2017 ◽  
Vol 757 ◽  
pp. 62-67 ◽  
Author(s):  
Kritsanachai Leelachai ◽  
Supissara Ruksanak ◽  
Tarakol Hongkeab ◽  
Supakeat Kambutong ◽  
Raymond A. Pearson ◽  
...  

In this study, diglycidyl ether of bisphenol A (DGEBA) cured cycloaliphatic polyamine was modified with functionalized celluloses for improved thermal and mechanical properties. Three different types of surface-modified cellulose, polyacrylamide-g-cellulose (PGC), aminopropoxysilane-g-cellulose (SGC), and carboxymethyl cellulose (CMC), were investigated and used as reinforcing agents in epoxy resins. The storage modulus of these modified epoxy systems was found to significantly increase with addition of cellulose fillers (up to 1 wt. % cellulose content). An improved fracture toughness (KIC) was also observed with increasing cellulose loading content with PGC and SGC. Among the surface-modified celluloses, epoxy modified with SGC was found to have the highest fracture toughness followed by PGC and CMC at 1.0 wt.% cellulose addition due to the chemical surface compatibility. The toughening mechanisms of the cellulose/epoxy composites, measured by scanning electron microscopy (SEM), revealed that fiber-debonding, fiber-bridging, and fiber-pull out were responsible for increased toughness.


Metals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 208 ◽  
Author(s):  
Xinchun Chen ◽  
Xuan Yin ◽  
Jie Jin

To satisfy the harsh service demand of stainless steel and aviation bearing steel, the anticorrosion and wettability behaviors of 9Cr18 stainless steel and M50 bearing steel tailored by ion beam surface modification technology were experimentally investigated. By controlling the ion implantation (F+, N+, N+ + Ti+) or deposition processes, different surface-modified layers and ceramic layers or composite layers with both effects (ion implantation and deposition processes) were obtained on metal surfaces. The wettability was characterized by a contact angle instrument, and the thermodynamics stabilization of ion implantation-treated metals in corrosive solution was evaluated through an electrochemical technique. X-ray photoelectron spectroscopy (XPS) was employed for detecting the chemical bonding states of the implanted elements. The results indicated that ion implantation or deposition-induced surface-modified layers or coating layers could increase water contact angles, namely improving hydrophobicity as well as thermodynamic stabilization in corrosive medium. Meanwhile, wettability with lubricant oil was almost not changed. The implanted elements could induce the formation of new phases in the near-surface region of metals, and the wettability behaviors were closely related to the as-formed ceramic components and amorphous sublayer.


Author(s):  
S. V. Nitta ◽  
V. Pisupatti ◽  
A. Jain ◽  
P. C. Wayner ◽  
W. N. Gill ◽  
...  

2020 ◽  
Vol 299 ◽  
pp. 299-304
Author(s):  
A.O. Makarova ◽  
L.R. Bogdanova ◽  
O.S. Zueva

Method of carbon nanotubes disaggregation with the help of protein material, gelatin, has been proposed which facilitate to disperse evenly nanotubes in hydrogels based on gelatin and polysaccharides (sodium alginate or κ-carrageenan). In the obtained composite hydrogels carbon nanotubes are located in the biopolymer matrix, i.e. being in biocompatible form without losing their unique properties. The removal of water from the pores of the hydrogel by means of freeze drying allowed to obtain materials having high porosity and with included carbon nanotubes. The produced hydrogels can be used to create eco-friendly composite materials for biomedical and technical purposes. Depending on the tasks the developed systems can also be used in the forms of xerogel (films), cryogel, aerogel, and even in the form of powder, containing carbon nanotubes.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Jie Chen ◽  
Tian-Yi Zhang ◽  
Fan-Long Jin ◽  
Soo-Jin Park

In this study, bio-based poly(lactic acid) (PLA)/polycaprolactone (PCL) blends and PLA/PCL/silicon carbide (SiC) composites were prepared using a solution blending method. The surface of the SiC whiskers was modified using a silane coupling agent. The effects of the PCL and SiC contents on the flexural properties, fracture toughness, morphology of PLA/PCL blends, and PLA/PCL/SiC composites were investigated using several techniques. Both the fracture toughness and flexural strength of PLA increased by the introduction of PCL and were further improved by the formation of SiC whiskers. Fracture surfaces were observed by scanning electron microscopy, which showed that the use of PCL as a reinforcing agent induces plastic deformation in the PLA/PCL blends. The SiC whiskers absorbed external energy because of their good interfacial adhesion with the PLA matrix and through SiC-PLA debonding in the PLA/PCL/SiC composites.


Sign in / Sign up

Export Citation Format

Share Document