Processing and Characterization of Silica Xerogel Films for Low-K Dielectric Applications

1999 ◽  
Vol 565 ◽  
Author(s):  
Anurag Jain ◽  
Svetlana Rogojevic ◽  
Satya V. Nitta ◽  
Venumadhav Pisupatti ◽  
William N. Gill ◽  
...  

AbstractSurface modified silica xerogel films of high porosity (60 - 90 %) and uniform thickness (0.4–2 μm) were fabricated at ambient pressure on silicon and silicon dioxide. The rheological properties that govern film uniformity were determined. A relation between the final dried film thickness and spin speed was developed. The porosity and thickness of the films could be controlled independently. The same porosity could be obtained over a wide range of aging time and temperature combinations. Fracture toughness was measured using the edge-lift-off technique. The best values were comparable to concrete. Surface modification was affected by treating the film with trimethylcholorosilane (TMCS) and other modifiers. Moisture adsorption was studied at 100% RH using a quartz crystal microbalance technique. Depending upon the degree and kind of surface treatment, films absorbed as much as 32% or as little as 2% of their weight in water. Dielectric constants (K), losses and breakdown strengths were comparable to values for calcined, bulk aerogels. Thin (≤ 500 Å) films of Copper (Cu) and Tantalum (Ta) were deposited on xerogel films and subjected to thermal annealing. No diffusion was observed within the limits of RBS. High-density plasma etching showed that the films etch an order of magnitude faster than conventional SiO2 films.

2000 ◽  
Vol 612 ◽  
Author(s):  
Anurag Jain ◽  
Svetlana Rogojevic ◽  
Feng Wang ◽  
William N. Gill ◽  
Peter C. Wayner ◽  
...  

AbstractSurface modified silica xerogel films of high porosity (25-90 %) and uniform thickness (0.4-2 µm) were fabricated at ambient pressure on silicon and other substrates. Mechanical reliability of the films was determined by measuring fracture toughness (adhesive) as a function of aging time and temperature using the modified edge-lift-off technique. There is an optimum aging time at 60 °C aging to obtain maximum fracture toughness for the procedure used here.Cu/xerogel/Si and Ta/xerogel/Si structures were annealed at different temperatures and in different ambient environments were analyzed using RBS and optical microscopy to assess the extent of interaction with the xerogel film. When annealed in N2 with trace amounts of O2 (equivalent to 10-7-10-6 Torr vacuum), RBS analysis does not show diffusion of Cu or Ta through the xerogel up to 450 °C. At higher temperatures, or in the presence of larger concentrations of O2, Cu and Ta oxidize. Cu oxidation leads to significant diffusion through the xerogel. Ta oxidation also results in diffusion-like RBS spectra. Using the micron-size ion beam to probe the Ta surface, this was found to be solely due to buckling of Ta films on xerogel. A thin SiNx layer on top of Cu and Ta prevents metal oxidation up to 640 °C, Cu diffusion, and Ta buckling.


1998 ◽  
Vol 511 ◽  
Author(s):  
S. Nitta ◽  
A. Jain ◽  
V. Pisupatti ◽  
W. N. Gill ◽  
P. C. Wayner ◽  
...  

ABSTRACTXerogel films of high porosity were fabricated using an ambient pressure technique. The same porosity can be obtained with different microstructures by varying the aging time of the films. The dielectric constant of these films as a function of porosity at 1 MHz follows correlations originally developed for bulk aerogels. Diffusion of copper is orders of magnitude faster in these xerogels than in the corresponding thermal oxide. An activation energy of 0.9 eV was estimated based on a convective diffusion model.


2021 ◽  
Author(s):  
Matthew Kroonblawd ◽  
H. Keo Springer

Recent grain scale simulations of HMX and TATB have shown that predictions for hot spot formation in high explosives are particularly sensitive to accurate determinations of the pressure-dependent melt curve and the shear viscosity of the liquid phase. These physics terms are poorly constrained beyond ambient pressure for the explosive RDX. We adopt an all-atom modeling approach using molecular dynamics (MD) simulations to predict the melt curve of RDX near to detonation conditions (30 GPa) and determine the shear viscosity of the liquid as a function of temperature and pressure above the melt curve. Phase-coexistence simulations were used to determine the melt curve, which is predicted to vary by almost 1100 K as the pressure increases from 0 GPa to 30 GPa. Equilibrium MD simulations and the Green-Kubo formalism were used to obtain the pressure-temperature dependent shear viscosity. The shear viscosity of RDX is predicted to be of similar magnitude to the viscosity of TATB at low GPa-range pressures, and to be roughly an order of magnitude lower than the viscosity of HMX. The temperature dependence of the shear viscosity is Arrhenius at a given pressure, and the exponential pre-factor and activation term exhibit a strong, yet complicated, pressure dependence. An empirical pressure-temperature dependent function for RDX shear viscosity is developed that simultaneously captures a wide range of MD predictions while taking an analytic form that extrapolates smoothly beyond the fitted regime. The relative strength of the pressure and temperature dependencies of these two physics terms is found to be of similar magnitude for RDX, HMX, and TATB, which motivates incorporating these results in future RDX grain scale modeling.


Actuators ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 62
Author(s):  
Ilia Uvarov ◽  
Pavel Shlepakov ◽  
Artem Melenev ◽  
Kechun Ma ◽  
Vitaly Svetovoy ◽  
...  

Microfluidic devices providing an accurate delivery of fluids at required rates are of considerable interest, especially for the biomedical field. The progress is limited by the lack of micropumps, which are compact, have high performance, and are compatible with standard microfabrication. This paper describes a micropump based on a new driving principle. The pump contains three membrane actuators operating peristaltically. The actuators are driven by nanobubbles of hydrogen and oxygen, which are generated in the chamber by a series of short voltage pulses of alternating polarity applied to the electrodes. This process guaranties the response time of the actuators to be much shorter than that of any other electrochemical device. The main part of the pump has a size of about 3 mm, which is an order of magnitude smaller in comparison with conventional micropumps. The pump is fabricated in glass and silicon wafers using standard cleanroom processes. The channels are formed in SU-8 photoresist and the membrane is made of SiNx. The channels are sealed by two processes of bonding between SU-8 and SiNx. Functionality of the channels and membranes is demonstrated. A defect of electrodes related to the lift-off fabrication procedure did not allow a demonstration of the pumping process although a flow rate of 1.5 µl/min and dosage accuracy of 0.25 nl are expected. The working characteristics of the pump make it attractive for the use in portable drug delivery systems, but the fabrication technology must be improved.


2008 ◽  
Vol 16 (8) ◽  
pp. 483-500 ◽  
Author(s):  
Jianqing Zhao ◽  
Yi Fu ◽  
Shumei Liu

Polyhedral oligomeric silsesquioxane (POSS) nanoparticles have been successfully incorporated into thermoplastic and thermoset polymers via copolymerization, grafting, blending, surface bonding, or other transformations. A great promise in the development of a wide range of POSS-containing nanocomposites with diversely improved properties has been displayed. Thermal properties, viscoelastic properties, mechanical strengths, dielectric constants, surface hydrophobicity and flame-retardancy of the nanocomposites are easily varied to target properties by adjusting POSS structure, crosslink density, processing condition, etc. Investigations on the effects of POSS molecular geometry, composition, and concentration on physical and mechanical properties of resultant POSS-modified thermoplastic and thermosetting nanocomposites have been carefully reviewed in this article.


2002 ◽  
Vol 124 (4) ◽  
pp. 762-770 ◽  
Author(s):  
G. S. Zhu ◽  
S. K. Aggarwal

This paper reports a numerical investigation of the transcritical droplet vaporization phenomena. The simulation is based on the time-dependent conservation equations for liquid and gas phases, pressure-dependent variable thermophysical properties, and a detailed treatment of liquid-vapor phase equilibrium at the droplet surface. The numerical solution of the two-phase equations employs an arbitrary Eulerian-Lagrangian, explicit-implicit method with a dynamically adaptive mesh. Three different equations of state (EOS), namely the Redlich-Kwong (RK), the Peng-Robinson (PR), and Soave-Redlich-Kwong (SRK) EOS, are employed to represent phase equilibrium at the droplet surface. In addition, two different methods are used to determine the liquid density. Results indicate that the predictions of RK-EOS are significantly different from those obtained by using the RK-EOS and SRK-EOS. For the phase-equilibrium of n-heptane-nitrogen system, the RK-EOS predicts higher liquid-phase solubility of nitrogen, higher fuel vapor concentration, lower critical-mixing-state temperature, and lower enthalpy of vaporization. As a consequence, it significantly overpredicts droplet vaporization rates, and underpredicts droplet lifetimes compared to those predicted by PR and SRK-EOS. In contrast, predictions using the PR-EOS and SRK-EOS show excellent agreement with each other and with experimental data over a wide range of conditions. A detailed investigation of the transcritical droplet vaporization phenomena indicates that at low to moderate ambient temperatures, the droplet lifetime first increases and then decreases as the ambient pressure is increased. At high ambient temperatures, however, the droplet lifetime decreases monotonically with pressure. This behavior is in accord with the reported experimental data.


1998 ◽  
Vol 550 ◽  
Author(s):  
V.P. Shastri ◽  
I. Martin ◽  
R. Langer

AbstractPorous polymeric media are used in several applications such as solid supports for separations and catalysis, as well as biomedical applications such as vascular grafts and wound dressings. We have developed a novel versatile process to produce polymeric cellular solids. This process which is based on a phase extraction-co-polymer precipitation is applicable to a wide range of polymer systems including water soluble polymers. It is capable of yielding polymer foams of high porosity (> 90%) and excellent mechanical characteristics in a very short time (less than 2 hours) without limitations in foam thickness. Polymer foam with such characteristics have great utility in tissue engineering applications. We have successfully explored polymer foams of biocompatible polymers produced by the presented approach for bone and cartilage engineering using bone marrow stromal cells.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 621
Author(s):  
Fakhara Sabir ◽  
Maimoona Qindeel ◽  
Mahira Zeeshan ◽  
Qurrat Ul Ain ◽  
Abbas Rahdar ◽  
...  

Lung cancer is among the most prevalent and leading causes of death worldwide. The major reason for high mortality is the late diagnosis of the disease, and in most cases, lung cancer is diagnosed at fourth stage in which the cancer has metastasized to almost all vital organs. The other reason for higher mortality is the uptake of the chemotherapeutic agents by the healthy cells, which in turn increases the chances of cytotoxicity to the healthy body cells. The complex pathophysiology of lung cancer provides various pathways to target the cancerous cells. In this regard, upregulated onco-receptors on the cell surface of tumor including epidermal growth factor receptor (EGFR), integrins, transferrin receptor (TFR), folate receptor (FR), cluster of differentiation 44 (CD44) receptor, etc. could be exploited for the inhibition of pathways and tumor-specific drug targeting. Further, cancer borne immunological targets like T-lymphocytes, myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), and dendritic cells could serve as a target site to modulate tumor activity through targeting various surface-expressed receptors or interfering with immune cell-specific pathways. Hence, novel approaches are required for both the diagnosis and treatment of lung cancers. In this context, several researchers have employed various targeted delivery approaches to overcome the problems allied with the conventional diagnosis of and therapy methods used against lung cancer. Nanoparticles are cell nonspecific in biological systems, and may cause unwanted deleterious effects in the body. Therefore, nanodrug delivery systems (NDDSs) need further advancement to overcome the problem of toxicity in the treatment of lung cancer. Moreover, the route of nanomedicines’ delivery to lungs plays a vital role in localizing the drug concentration to target the lung cancer. Surface-modified nanoparticles and hybrid nanoparticles have a wide range of applications in the field of theranostics. This cross-disciplinary review summarizes the current knowledge of the pathways implicated in the different classes of lung cancer with an emphasis on the clinical implications of the increasing number of actionable molecular targets. Furthermore, it focuses specifically on the significance and emerging role of surface functionalized and hybrid nanomaterials as drug delivery systems through citing recent examples targeted at lung cancer treatment.


Author(s):  
Wookyung Kim ◽  
Jeffrey Cohen

The central objective of this study is to investigate the effectiveness of implementing a plasma discharge to improve combustor dynamics and flame stability. Specifically, a nano-second pulsed plasma discharge (NSPD) was applied to a premixed gaseous fuel/air dump combustor for mitigation of dynamic combustion instabilities with a minimal NOX penalty. This paper addresses the scaling of this technology from ambient pressure and temperature conditions to more realistic gas turbine combustor conditions. A model combustor operating at representative conditions of O (102) m/s flow velocity, ∼ 580 K combustor inlet temperature, and ∼ 5 atm in-combustor pressure was selected to simulate a typical low-power environment of future aero engine gas turbine combustors. Fully premixed methane or propane was utilized as a fuel. Similar to a previous ambient-pressure study, a significant reduction of pressure fluctuation level was observed, by a factor of 2X to 4X over a wide range of velocity at the baseline temperature and pressure. The plasma power required for the reduction increased linearly with increasing velocity. The change of fuel from methane to propane showed that propane requires significantly (2X) higher plasma power to achieve a similar level of noise reduction. It was also observed that the lean blowout (LBO) limit was significantly extended in the presence of the plasma, however, substantial incomplete combustion occurs in the extended regime. NOX measurements showed that the incremental NOX production due to the presence of the plasma was low (∼ < 1EINOX) in general, however, it increased with decreasing velocity and pressure, and increasing temperature.


Sign in / Sign up

Export Citation Format

Share Document