Characterization of Inversion Domains in GaN by Electric Force Microscopy in Conjunction with Transmission Electron Microscopy and Wet Chemical Etching

2001 ◽  
Vol 680 ◽  
Author(s):  
F. Yun ◽  
P. Visconti ◽  
K. M. Jones ◽  
A. A. Baski ◽  
H. Morkoç ◽  
...  

ABSTRACTInversion domains (IDs) in III-nitride semiconductors degrade the performance of such devices, and so their identification and elimination is critical.An inversion domain on a Ga- polarity samples appears as an N-polarity domain, which has a polarization reversed with respect to the rest of the surface and therefore has a different surface potential. Surface-contact-potential electric force microscopy (SCP-EFM) is an extension of atomic force microscopy (AFM) that allows imaging of the surface electrostatic potential. Previously, we established the particular mode of operation necessary to identify inversion domains on III-nitrides using a control sample. We have now studied inversion domains in GaN films grown by metalorganic chemical vapor deposition (MOCVD) and molecular beam epitaxy (MBE). The existence of inversion domains was also verified by transmission electron microscopy (TEM) using multiple dark field imaging. In MOCVD grown GaN, we found predominant Ga-polarity with very low density of IDs, while in the MBE GaN, a mix polarity feature was identified.

Author(s):  
K. Doong ◽  
J.-M. Fu ◽  
Y.-C. Huang

Abstract The specimen preparation technique using focused ion beam (FIB) to generate cross-sectional transmission electron microscopy (XTEM) samples of chemical vapor deposition (CVD) of Tungsten-plug (W-plug) and Tungsten Silicides (WSix) was studied. Using the combination method including two axes tilting[l], gas enhanced focused ion beam milling[2] and sacrificial metal coating on both sides of electron transmission membrane[3], it was possible to prepare a sample with minimal thickness (less than 1000 A) to get high spatial resolution in TEM observation. Based on this novel thinning technique, some applications such as XTEM observation of W-plug with different aspect ratio (I - 6), and the grain structure of CVD W-plug and CVD WSix were done. Also the problems and artifacts of XTEM sample preparation of high Z-factor material such as CVD W-plug and CVD WSix were given and the ways to avoid or minimize them were suggested.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2849
Author(s):  
Marcin Jan Dośpiał

This paper presents domain and structure studies of bonded magnets made from nanocrystalline Nd-(Fe, Co)-B powder. The structure studies were investigated using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), Mössbauer spectroscopy and X-ray diffractometry. On the basis of performed qualitative and quantitative phase composition studies, it was found that investigated alloy was mainly composed of Nd2(Fe-Co)14B hard magnetic phase (98 vol%) and a small amount of Nd1.1Fe4B4 paramagnetic phase (2 vol%). The best fit of grain size distribution was achieved for the lognormal function. The mean grain size determined from transmission electron microscopy (TEM) images on the basis of grain size distribution and diffraction pattern using the Bragg equation was about ≈130 nm. HRTEM images showed that over-stoichiometric Nd was mainly distributed on the grain boundaries as a thin amorphous border of 2 nm in width. The domain structure was investigated using a scanning electron microscope and metallographic light microscope, respectively, by Bitter and Kerr methods, and by magnetic force microscopy. Domain structure studies revealed that the observed domain structure had a labyrinth shape, which is typically observed in magnets, where strong exchange interactions between grains are present. The analysis of the domain structure in different states of magnetization revealed the dynamics of the reversal magnetization process.


2020 ◽  
Vol 75 (11) ◽  
pp. 913-919
Author(s):  
Frank Krumeich

AbstractSince the 1970s, high-resolution transmission electron microscopy (HRTEM) is well established as the most appropriate method to explore the structural complexity of niobium tungsten oxides. Today, scanning transmission electron microscopy (STEM) represents an important alternative for performing the structural characterization of such oxides. STEM images recorded with a high-angle annular dark field (HAADF) detector provide not only information about the cation positions but also about the distribution of niobium and tungsten as the intensity is directly correlated to the local scattering potential. The applicability of this method is demonstrated here for the characterization of the real structure of Nb7W10O47.5. This sample contains well-ordered domains of Nb8W9O47 and Nb4W7O31 besides little ordered areas according to HRTEM results. Structural models for Nb4W7O31 and twinning occurring in this phase have been derived from the interpretation of HAADF-STEM images. A remarkable grain boundary between well-ordered domains of Nb4W7O31 and Nb8W9O47 has been found that contains one-dimensionally periodic features. Furthermore, short-range order observed in less ordered areas could be attributed to an intimate intergrowth of small sections of different tetragonal tungsten bronze (TTB) based structures.


1995 ◽  
Vol 378 ◽  
Author(s):  
G. Kissinger ◽  
T. Morgenstern ◽  
G. Morgenstern ◽  
H. B. Erzgräber ◽  
H. Richter

AbstractStepwise equilibrated graded GexSii-x (x≤0.2) buffers with threading dislocation densities between 102 and 103 cm−2 on the whole area of 4 inch silicon wafers were grown and studied by transmission electron microscopy, defect etching, atomic force microscopy and photoluminescence spectroscopy.


1995 ◽  
Vol 403 ◽  
Author(s):  
G. Bai ◽  
S. Wittenbrock ◽  
V. Ochoa ◽  
R. Villasol ◽  
C. Chiang ◽  
...  

AbstractCu has two advantages over Al for sub-quarter micron interconnect application: (1) higher conductivity and (2) improved electromigration reliability. However, Cu diffuses quickly in SiO2and Si, and must be encapsulated. Polycrystalline films of Physical Vapor Deposition (PVD) Ta, W, Mo, TiN, and Metal-Organo Chemical Vapor Deposition (MOCVD) TiN and Ti-Si-N have been evaluated as Cu diffusion barriers using electrically biased-thermal-stressing tests. Barrier effectiveness of these thin films were correlated with their physical properties from Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM), Secondary Electron Microscopy (SEM), and Auger Electron Spectroscopy (AES) analysis. The barrier failure is dominated by “micro-defects” in the barrier film that serve as easy pathways for Cu diffusion. An ideal barrier system should be free of such micro-defects (e.g., amorphous Ti-Si-N and annealed Ta). The median-time-to-failure (MTTF) of a Ta barrier (30 nm) has been measured at different bias electrical fields and stressing temperatures, and the extrapolated MTTF of such a barrier is > 100 year at an operating condition of 200C and 0.1 MV/cm.


Sign in / Sign up

Export Citation Format

Share Document