Friction and Wear of Stainless Steels Implanted with Ti and C

1981 ◽  
Vol 7 ◽  
Author(s):  
F. G. Yost ◽  
L. E. Pope ◽  
D. M. Follstaedt ◽  
J. A. Knapp ◽  
S. T. Picraux

ABSTRACTFriction and wear tests were completed on Fe, and stainless steels of the type 304, 15–5 PH, Nitronic 60 and 440C implanted with Ti and C. Samples were mechanically polished prior to ion implantation to fluences of 2 × 1017 Ti/cm2 (90–180 keV) and 2 × 1017 C/cm2 (30 keV); the implantation profiles of the two elements overlapped to 0.1 μm. Light load wear conditions with no lubrication were evaluated in a pin-on-disc configuration. Ion implantation significantly reduced the friction coefficient by up to 75% and decreased the maximum wear depth by up to 95%, but both effects were material and load dependent. Only stainless steel 304 had both friction and wear reduced by implantation for all loads examined. Fine-scale parallel grooves were present in the wear track for light loads, but this wear pattern was transformed to a galled structure at high loads. A correlation existed between decreased friction, reduced wear, the wear track morphology and Ti in the wear track.

1983 ◽  
Vol 27 ◽  
Author(s):  
D. M. Follstaedt ◽  
F. G. Yost ◽  
L.E. Pope

ABSTRACTImplantation of Ti and C into stainless steel discs of Types 304, 15–5 PH, Nitronic 60 and 440C has previously been reported to reduce wear depths by up to ∼ 85% and friction by ∼ 50% in unlubricated pin-on-disc tests. Our earlier studies relating microstructure to friction and wear results in Type 304 are first summarized; these indicate that the improvements in the surface mechanical properties are due to an amorphous surface layer, similar to the amorphous layer observed in pure Fe implanted with Ti and C. We have now examined the other three implanted steels and found similar amorphous layers. These results strongly suggest that the amorphous surface alloy is responsible for reduced friction and wear in all the steels.


MRS Advances ◽  
2017 ◽  
Vol 2 (62) ◽  
pp. 3873-3881 ◽  
Author(s):  
M.T. Hernández-Sierra ◽  
R. Ortega-Álvarez ◽  
M.G. Bravo-Sánchez ◽  
L.D. Aguilera-Camacho ◽  
J.S. García-Miranda ◽  
...  

ABSTRACTAISI 4140 steel is a popular low alloy steel due to its wide applications as workpiece in the metal-mechanic industry; there are extensive research about surface modification to enhance its properties for specific applications. The focus of this study was to investigate the influence of the nature of lubricants, mineral and vegetable oils, on the tribological performance of the hardened and tempered AISI 4140 steel against alumina (Al2O3). For this purpose, friction tests were conducted in a pin on disc tribometer according to ASTM standard G 99-05, at room temperature of 25 °C and in air with about 30% relative humidity. Lubricants were selected to be commercial Holifa B22/2 oil as mineral oil and Castor Oil as bio-lubricant, with kinematic viscosity at 25 °C of 667 and 662 cSt respectively. The following conditions were settled for all the experiments: relative sliding speed of 0.05 ms-1, sliding distance of 1000 m and wear track radius of 2 mm. Friction behaviour was reported as the average kinetic friction coefficient (µK) while wear performance was evaluated as wear rate (K). In order to identify and determine wear mechanisms, worn surfaces were analyzed by optical microscopy and profilometry. It was found that, for these tribosystems, hardened and tempered AISI 4140 steel had the best friction and wear performance under lubrication with Castor Oil. The lowest µK achieved was 0.035, whereas the lowest K was 1.02x10-8 mm3/Nm. With this bio-lubricant, there were reductions in friction and wear up to 72% compared with those under mineral oil lubrication.


1985 ◽  
Vol 107 (4) ◽  
pp. 467-471 ◽  
Author(s):  
M. Hirano ◽  
S. Miyake

The effects of boron and argon ion implantation on the tribological characteristics of SUS440C stainless steel, sliding against a SUS440C ball (unimplanted) were investigated at room temperature using a friction test apparatus employing a ball-plate geometry in the absence of a lubricant. Wear performance was estimated using a profilometer tracing of the specimen wear track. Boron implantation reduced both the friction and wear of SUS440C. The friction coefficient of SUS440C was reduced from 0.75 to 0.15. SEM observations of wear track topography suggest that the reduction of the friction coefficient can be attributed to reduced adhesion due to boron implantation. The friction coefficient of the boron implanted layer decreased with an increase in the total ion dose. Argon implantation was carried out to distinguish the effects of implantation from the influence of contamination. Argon implantation increased the friction coefficient from 0.8 to 1.0 in contrast with boron implantation.


2019 ◽  
Vol 71 (10) ◽  
pp. 1206-1212
Author(s):  
Jianpeng Wu ◽  
Biao Ma ◽  
Heyan Li ◽  
Chengnan Ma

Purpose The purpose of this paper is to study friction and wear properties of three types of steels against paper-based friction disc, including 65Mn, 20#steel and 30CrAl, so as to obtain the appropriate working conditions for different friction materials in the transmission system. Design/methodology/approach Based on actual working conditions, pin-on-disc tests are conducted on a universal material tester. The two evaluation indexes, including average friction coefficient and variation coefficient, are introduced to analyze the different friction properties among three types of steel. Furthermore, the temperature-dependent wear pattern and wear depth are subsequently studied. Findings The results show that 65Mn is more suitable for working under heavy load and low velocity, but 30CrAl and 20#steel are suitable for working under light load and high velocity. Moreover, wear primarily occurs on paper-based material and peaks at about 325. Practical implications This research of different materials and friction property for friction pairs is helpful to improve the performance and prolong the service life of transmission systems. Originality/value Suitable working conditions of different friction materials are obtained, and the correlation between wear and decomposition in high temperature is verified.


Author(s):  
A.H. Advani ◽  
L.E. Murr ◽  
D. Matlock

Thermomechanically induced strain is a key variable producing accelerated carbide precipitation, sensitization and stress corrosion cracking in austenitic stainless steels (SS). Recent work has indicated that higher levels of strain (above 20%) also produce transgranular (TG) carbide precipitation and corrosion simultaneous with the grain boundary phenomenon in 316 SS. Transgranular precipitates were noted to form primarily on deformation twin-fault planes and their intersections in 316 SS.Briant has indicated that TG precipitation in 316 SS is significantly different from 304 SS due to the formation of strain-induced martensite on 304 SS, though an understanding of the role of martensite on the process has not been developed. This study is concerned with evaluating the effects of strain and strain-induced martensite on TG carbide precipitation in 304 SS. The study was performed on samples of a 0.051%C-304 SS deformed to 33% followed by heat treatment at 670°C for 1 h.


Author(s):  
D.I. Potter ◽  
M. Ahmed ◽  
K. Ruffing

Ion implantation, used extensively for the past decade in fabricating semiconductor devices, now provides a unique means for altering the near-surface chemical compositions and microstructures of metals. These alterations often significantly improve physical properties that depend on the surface of the material; for example, catalysis, corrosion, oxidation, hardness, friction and wear. Frequently the mechanisms causing these beneficial alterations and property changes remain obscure and much of the current research in the area of ion implantation metallurgy is aimed at identifying such mechanisms. Investigators thus confront two immediate questions: To what extent is the chemical composition changed by implantation? What is the resulting microstructure? These two questions can be investigated very fruitfully with analytical electron microscopy (AEM), as described below.


Alloy Digest ◽  
1961 ◽  
Vol 10 (9) ◽  

Abstract Carpenter Stainless 304+B is similar to conventional Type 304 with the addition of boron to give it a much higher thermal neutron absorption cross-section than other austenitic stainless steels. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: SS-121. Producer or source: Carpenter.


2017 ◽  
Vol 886 ◽  
pp. 69-73
Author(s):  
Myo Minn ◽  
Sylvie Castagne

Investigation of the tribological characteristics of Ti6Al4V (Ti64) was performed by using a pin-on-disc tribometer. Polymer composites composed of a polyester resin matrix and silica abrasives with two different particle sizes were used as the counterface pin material. The macro and micro surface features on the wear track in relation to different abrasive particle sizes were analyzed by using optical microscope and scanning electron microscope. The wear depth was monitored by utilizing surface profiler and the change in hardness of Ti64 was measured by using Vickers hardness tester before and after the test. The effect of sliding speeds on the coefficient of friction was also studied. During sliding against Ti64 substrate, the results showed lower coefficient of friction, smoother surface features, and lower wear rate for the case of the polymer composite pin with smaller silica particles size when compared to that of polymer composite pin with larger silica particles size. The higher sliding speed generated more wear debris, much deeper wear depth, and wider wear track on Ti64 substrate.


1994 ◽  
Vol 9 (11) ◽  
pp. 2823-2838 ◽  
Author(s):  
B.K. Gupta ◽  
Bharat Bhushan ◽  
C. Capp ◽  
J.V. Coe

In previous studies, sublimed C60-rich fullerene films on silicon, when slid against a 52100 steel ball under dry conditions, have exhibited low coefficient of friction (∼0.12). Films with different purities can be produced by sublimation at different substrate temperatures. In this paper, effects of purity of fullerene films and ion implantation of the films with Ar ions on the friction and wear properties of sublimed fullerene films are reported. C60-rich films (called here films with high purity) exhibit low macroscale friction. An increased amount of C70 and impurities in the fullerene film determined using Raman and Fourier transform infrared (FTIR), increases its coefficient of friction. Microscale friction measurements using friction force microscopy also exhibited similar trends. Low coefficient of friction of sublimed C60-rich films on silicon is probably due to the formation of a tenacious transfer film of C60 molecules on the mating 52100 steel ball surface. Based on scanning tunneling microscopy (STM), transmission electron microscopy (TEM), and high resolution TEM (HRTEM), we found that fullerene films primarily consisted of C60 molecules in a fcc lattice structure. Nanoindenter was used to measure hardness and elastic modulus of the as-deposited films. Ion-implantation with 1 × 1016 Ar+ cm−2 reduced macroscale friction down to about 0.10 from 0.12 with an increase in wear life by a factor of 4; however, doses of 5 × 1016 ions cm−2 gave three times higher friction and poorer wear life; higher doses disintegrated the C60 molecules. Based on STM, TEM, Raman, FTIR, and laser desorption Fourier-transform ion cyclotron resonance mass spectrometer (LD/FT/ICR) studies, we found that the ion implantation with a dose of 1 × 1016 Ar+ cm−2 resulted in smoothening of the fullerene film surface probably by compacting clusters, but without disintegrating the C60 molecules. However, a high dose of 5 × 1016 Ar+ cm−2 damaged the C60 molecules, converting it to an amorphous carbon. Nanoindentation studies show that ion implantation with a dose of 1 × 1016 Ar+ cm−2 resulted in an increase in the hardness from about 1.2 to 4.0 GPa and in elastic modulus from about 70 to 75 GPa and modified the elastic-plastic deformation behavior.


Sign in / Sign up

Export Citation Format

Share Document