Optimized Materials Properties for Organosilicate Glasses Produced by Plasma-Enhanced Chemical Vapor Deposition

2003 ◽  
Vol 766 ◽  
Author(s):  
M.L. O'Neill ◽  
R.N. Vrtis ◽  
J.L. Vincent ◽  
A.S. Lukas ◽  
E.J. Karwacki ◽  
...  

AbstractIn this paper we examine the relationship between precursor structure and material properties for films produced from several leading organosilicon precursors on a common processing platform. Results from our study indicate that for the precursors tested the nature of the precursor has little effect upon film composition but significant impact on film structure and properties.

1996 ◽  
Vol 424 ◽  
Author(s):  
Hong-Seok Choi ◽  
Jae-Hong Jun ◽  
Keun-Ho Jang ◽  
Min-Koo Han

AbstractThe material properties of laser-annealed a-Si:Nx films were investigated. The a-Si:Nx films for laser-annealing were deposited by rf plasma enhanced chemical vapor deposition (PECVD) with NH3 and SiH4 gas mixtures. At the 0.35 of NH3/SiH4 ratio, the optical band-gap was abruptly increased to 2.82 eV from 2.05 eV by laser-annealing which indicates that Si-N bonding comes to be notable at that ratio. The electrical conductivity showed the maximum value of 4× 10-6 S/cm at the 0.11 of NH3/SiH4 ratio where the grain growth and the increase of Si-N bonding are optimized for the enhancement of electrical conductivity. The σP/σD ratio which is related to the defects states for photo generation centers was decreased with increasing NH 3/SiH 4 ratio. Our experimental data showed that the optical band gap and electrical conductivity of laserannealed a-Si:Nx films were dominantly affected by the NH3/SiH4 ratio at the 250 mJ/cm2 of laser-annealing energy density.


MRS Bulletin ◽  
2000 ◽  
Vol 25 (11) ◽  
pp. 21-30 ◽  
Author(s):  
Joel S. Miller ◽  
Arthur J. Epstein

Molecule-based magnets are a broad, emerging class of magnetic materials that expand the materials properties typically associated with magnets to include low density, transparency, electrical insulation, and low-temperature fabrication, as well as combine magnetic ordering with other properties such as photoresponsiveness. Essentially all of the common magnetic phenomena associated with conventional transition-metal and rare-earth-based magnets can be found in molecule-based magnets. Although discovered less than two decades ago, magnets with ordering temperatures exceeding room temperature, very high (∼27.0 kOe or 2.16 MA/m) and very low (several Oe or less) coercivities, and substantial remanent and saturation magnetizations have been achieved. In addition, exotic phenomena including photoresponsiveness have been reported. The advent of molecule-based magnets offers new processing opportunities. For example, thin-film magnets can be prepared by means of low-temperature chemical vapor deposition and electrodeposition methods.


2011 ◽  
Vol 264-265 ◽  
pp. 777-782 ◽  
Author(s):  
M.A. Maleque ◽  
M.S. Hossain ◽  
S. Dyuti

successful design of folding bicycle should take into account the function, material properties, and fabrication process. There are some other factors that should be considered in anticipating the behavior of materials for folding bicycle. In order to understand the relationship between material properties and design of a folding bicycle and also for the future direction in new materials with new design, a comprehensive study on the design under different conditions are essential. Therefore, a systematic study on the relationship between material properties and design for folding bicycle has been performed. The advantages and disadvantages matrix between conventional bicycle and folding bicycle is presented for better understanding of the materials properties and design. It was found that the materials properties of the folding bicycle frame such as fatigue and tensile strength are the important properties for the better performance of the frame. The relationship between materials properties and design is not straight forward because the behavior of the material in the finished product could be different from that of the raw material. The swing hinge technique could be a better technique in the design for the folding bicycle frame.


1988 ◽  
Vol 126 ◽  
Author(s):  
P. Mel ◽  
S. A. Schwarz ◽  
T. Venkatesan ◽  
C. L. Schwartz ◽  
E. Colas

ABSTRACTTe enhanced mixing of AlAs/GaAs superlattice has been observed by secondary ion mass spectrometry. The superlattice sample was grown by organometallic chemical vapor deposition and doped with Te at concentrations of 2×1017 to 5×1018 cm−.3 In the temperature range from 700 to 1000 C, a single activation energy for the Al diffusion of 2.9 eV was observed. Furthermore, it has been found that the relationship between the Al diffusion coefficient and Te concentration is linear. Comparisons have been made between Si and Te induced superlattice mixing.


1993 ◽  
Vol 8 (10) ◽  
pp. 2644-2648 ◽  
Author(s):  
Jie Si ◽  
Seshu B. Desu

Pure and conducting RuO2 thin films were successfully deposited on Si, SiO2/Si, and quartz substrates at temperatures as low as 550 °C by a hot wall metal-organic chemical vapor deposition (MOCVD). Bis(cyclopentadienyl)ruthenium, Ru(C5H5)2, was used as the precursor. An optimized MOCVD process for conducting RuO2 thin films was established. Film structure was dependent on MOCVD process parameters such as bubbler temperature, dilute gas flow rates, deposition temperature, and total pressure. Either pure RuO2, pure Ru, or a RuO2 + Ru mixture was obtained under different deposition conditions. As-deposited pure RuO2 films were specular, crack-free, and well adhered on the substrates. The Auger electron spectroscopy depth profile showed good composition uniformity across the bulk of the films. The MOCVD RuO2 thin films exhibited a resistivity as low as 60 μω-cm. In addition, the reflectance of RuO2 in the NIR region had a metallic character.


Sign in / Sign up

Export Citation Format

Share Document