Local Modification of Microstructure and of Properties by FIB-CVD

2003 ◽  
Vol 792 ◽  
Author(s):  
H. Wanzenboeck ◽  
S. Harasek ◽  
H. Langfischer ◽  
B. Basnar ◽  
W. Brezna ◽  
...  

ABSTRACTThe focused ion beam has been acknowledged as a versatile tool for local sputtering as well as local deposition of material. A beam diameter below 10 nm is feasible and renders FIB a powerful tool for microstructure fabrication and generation. This experimental study investigates the geometrical limitations of FIB processing as well as the implications on the processed material. The high energetic ions of the primary beam also change the properties of the processed material due to implantation and atomic mixing. The incorporation of Ga from the FIB may be beneficial in the case of deliberate implantation or unfavorable as a chemical impurity. Higher doses of ion irradiation caused amorphisation of the material. The effects of FIB processing on the substrates as well as deposited structures are illustrated.

Author(s):  
Valery Ray ◽  
Josef V. Oboňa ◽  
Sharang Sharang ◽  
Lolita Rotkina ◽  
Eddie Chang ◽  
...  

Abstract Despite commercial availability of a number of gas-enhanced chemical etches for faster removal of the material, there is still lack of understanding about how to take into account ion implantation and the structural damage by the primary ion beam during focused ion beam gas-assisted etching (FIB GAE). This paper describes the attempt to apply simplified beam reconstruction technique to characterize FIB GAE within single beam width and to evaluate the parameters critical for editing features with the dimensions close to the effective ion beam diameter. The approach is based on reverse-simulation methodology of ion beam current profile reconstruction. Enhancement of silicon dioxide etching with xenon difluoride precursor in xenon FIB with inductively coupled plasma ion source appears to be high and relatively uniform over the cross-section of the xenon beam, making xenon FIB potentially suitable platform for selective removal of materials in circuit edit application.


JOM ◽  
2021 ◽  
Author(s):  
Alexander J. Leide ◽  
Richard I. Todd ◽  
David E. J. Armstrong

AbstractSilicon carbide is desirable for many nuclear applications, making it necessary to understand how it deforms after irradiation. Ion implantation combined with nanoindentation is commonly used to measure radiation-induced changes to mechanical properties; hardness and modulus can be calculated from load–displacement curves, and fracture toughness can be estimated from surface crack lengths. Further insight into indentation deformation and fracture is required to understand the observed changes to mechanical properties caused by irradiation. This paper investigates indentation deformation using high-resolution electron backscatter diffraction (HR-EBSD) and Raman spectroscopy. Significant differences exist after irradiation: fracture is suppressed by swelling-induced compressive residual stresses, and the plastically deformed region extends further from the indentation. During focused ion beam cross-sectioning, indentation cracks grow, and residual stresses are modified. The results clarify the mechanisms responsible for the modification of apparent hardness and apparent indentation toughness values caused by the compressive residual stresses in ion-implanted specimens.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2268
Author(s):  
Hongying Sun ◽  
Penghui Lei ◽  
Guang Ran ◽  
Hui Wang ◽  
Jiyun Zheng ◽  
...  

As leading candidates of sheet steels for advanced nuclear reactors, three types of Ni–Mo–Cr high-strength low alloy (HSLA) steels named as CNST1, CNST2 and CNSS3 were irradiated by 400 keV Fe+ with peak fluence to 1.4 × 1014, 3.5 × 1014 and 7.0 × 1014 ions/cm2, respectively. The distribution and morphology of the defects induced by the sample preparation method and Fe+ irradiation dose were investigated by transmission electron microscopy (TEM) and positron-annihilation spectroscopy (PAS). TEM samples were prepared with two methods, i.e., a focused ion beam (FIB) technique and the electroplating and twin-jet electropolishing (ETE) method. Point defects and dislocation loops were observed in CNST1, CNST2 and CNSS3 samples prepared via FIB. On the other hand, samples prepared via the ETE method revealed that a smaller number of defects was observed in CNST1, CNST2 and almost no defects were observed in CNST3. It is indicated that artifact defects could be introduced by FIB preparation. The PAS S-W plots showed that the existence of two types of defects after ion implantation included small-scale defects such as vacancies, vacancy clusters, dislocation loops and large-sized defects. The S parameter of irradiated steels showed a clear saturation in PAS response with increasing Fe+ dose. At the same irradiation dose, higher values of the S-parameter were achieved in CNST1 and CNST2 samples when compared to that in CNSS3 samples. The mechanism and evolution behavior of irradiation-induced defects were analyzed and discussed.


1999 ◽  
Vol 5 (S2) ◽  
pp. 914-915
Author(s):  
T. Kamino ◽  
T. Yaguchi ◽  
H. Matsumoto ◽  
H. Kobayashi ◽  
H. Koike

A method for site specific characterization of the materials using a dedicated focused ion beam(FIB) system and an analytical transmission electron microscope (TEM) was developed. Needless to say, in TEM specimen preparation using FIB system, stability of a specimen is quite important. The specimen stage employed in the developed FIB system is the one designed for high resolution TEM, and the specimen drift rate of the stage is less than lnm/min. In addition, FIB-TEM compatible specimen holder which allows milling of a specimen with the FIB system and observation of the specimen with the TEM without re-loading was developed. To obtain thin specimen from the area to be characterized correctly, confirmation of the area before final milling is needed. However, observation of cross sectional view in a FIB system is recommended because it causes damage by Ga ion irradiation. To solve this problem, we used a STEM unit as a viewer of FIB milled specimen.


Nanomaterials ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1906 ◽  
Author(s):  
Alba Salvador-Porroche ◽  
Soraya Sangiao ◽  
Patrick Philipp ◽  
Pilar Cea ◽  
José María De Teresa

The Focused Ion Beam Induced Deposition (FIBID) under cryogenic conditions (Cryo-FIBID) technique is based on obtaining a condensed layer of precursor molecules by cooling the substrate below the condensation temperature of the gaseous precursor material. This condensed layer is irradiated with ions according to a desired pattern and, subsequently, the substrate is heated above the precursor condensation temperature, revealing the deposits with the shape of the exposed pattern. In this contribution, the fast growth of Pt-C deposits by Cryo-FIBID is demonstrated. Here, we optimize various parameters of the process in order to obtain deposits with the lowest-possible electrical resistivity. Optimized ~30 nm-thick Pt-C deposits are obtained using ion irradiation area dose of 120 μC/cm2 at 30 kV. This finding represents a substantial increment in the growth rate when it is compared with deposits of the same thickness fabricated by standard FIBID at room temperature (40 times enhancement). The value of the electrical resistivity in optimized deposits (~4 × 104 µΩ cm) is suitable to perform electrical contacts to certain materials. As a proof of concept of the potential applications of this technology, a 100 µm × 100 µm pattern is carried out in only 43 s of ion exposure (area dose of 23 μC/cm2), to be compared with 2.5 h if grown by standard FIBID at room temperature. The ion trajectories and the deposit composition have been simulated using a binary-collision-approximation Monte Carlo code, providing a solid basis for the understanding of the experimental results.


Crystals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 252
Author(s):  
Tianyao Wang ◽  
Hyosim Kim ◽  
Frank A. Garner ◽  
Kenneth L. Peddicord ◽  
Lin Shao

We studied the effects of internal free surfaces on the evolution of ion-induced void swelling in pure iron. The study was initially driven by the motivation to introduce a planar free-surface defect sink at depths that would remove the injected interstitial effect from ion irradiation, possibly enhancing swelling. Using the focused ion beam technique, deep trenches were created on a cross section of pure iron at various depths, so as to create bridges of thickness ranging from 0.88 μm to 1.70 μm. Samples were then irradiated with 3.5 MeV Fe2+ ions at 475 °C to a fluence corresponding to a peak displacement per atom dose of 150 dpa. The projected range of 3.5 MeV Fe2+ ions is about 1.2 μm so the chosen bridge thicknesses involved fractions of the ion range, thicknesses comparable to the mean ion range (peak of injected interstitial distribution), and thicknesses beyond the full range. It was found that introduction of such surfaces did not enhance swelling but actually decreased it, primarily because there were now two denuded zones with a combined stronger influence than that of the injected interstitial. The study suggests that such strong surface effects must be considered for ion irradiation studies of thin films or bridge-like structures.


1988 ◽  
Vol 3 (6) ◽  
pp. 1063-1071 ◽  
Author(s):  
U. G. Akano ◽  
D. A. Thompson ◽  
W. W. Smeltzer ◽  
J. A. Davies

Atomic mixing in Ni/Pd bilayer films due to 120 keV Ar+ irradiation in the thermally assisted regime (523−673 K) has been measured, in situ, using Rutherford backscattering with 2.0 MeV 4He+ ions. The mean diameter of grains in these polycrystallinc films increased from 10 to 60 nm, following Ar+ bombardment at 573 K. Initial mixing was rapid due to grain boundary diffusion and incorporation of the metal solute into the solvent metal matrix by grain growth; this mixing stage was essentially complete within 10 min for annealed films or after an Ar+ dose of 4 × 1015 cm−2 in irradiated films (10 min irradiation). No further measurable mixing occurred in the annealed, unirradiated films. For the irradiated samples the initial rapid mixing (6−35 atoms/ion) was followed by a slower mixing stage of 0.7–1.8 atoms/ion for irradiation doses of up to 2.5 × 1016 Ar+ cm−2. The Ar+ bombardment gave rise to much smaller mixing levels when the Pd films were deposited on large-grain or single-crystal Ni. A diffusion analysis demonstrates that the effective diffusivity, Deff, for ion-irradiation-enhanced mixing in the thermally assisted regime satisfied the relation Dl < Deff < DB, where the ratio of the grain boundary to lattice diffusivity was DB/Dl > 106.


1992 ◽  
Vol 279 ◽  
Author(s):  
Kenji Gamo

ABSTRACTFocused ion beam (FIB) techniques have many advantages which stem from being maskless and have attracted much interest for various applications includingin situprocessing. However, reduction of damage and improvement of throughput are problems awaiting solution. For reduction of damage, low energy FIB is promising and for improvement of throughput, understanding of the basic processes and optimization of process parameters based on this understanding is crucial. This paper discusses characteristics of low energy FIB system, ion beam assisted etching and ion implantation, and effect of damage with putting emphasize onin situfabrication. Low energy (0.05–25keV) FIB system being developed forms -lOOnm diameter ion beams and is connected with molecular beam epitaxy system. Many results indicate that low damage, maskless ion beam assisted etching is feasible using low energy beams. Recently it was also shown that for ion beam assisted etching of GaAs, pulse irradiation yields very high etching rate of 500/ion. This indicates that the optimization of the relative ratio of ion irradiation and reactant gas supply as important to achieve high etching rate. Low energy FIB is also important for selective doping for high electron mobility heterostructures of GaAs/GaAlAs, because high mobility is significantly degraded by a slight damage.


1989 ◽  
Vol 147 ◽  
Author(s):  
John Melngailis ◽  
Patricia G. Blauner

AbstractFocused ion beam induced deposition is already in use commercially for the repair of clear defects in photomasks, where missing absorber is added. Research is being carried out to extend this technique to the repair of x-ray lithography masks and to the restructuring and repair of integrated circuits, particularly in the prototype phase. In this technique a local gas ambient is created, for example, by aiming a small nozzle at the surface. The gas molecules are thought to adsorb on the surface and to be broken up by the scanned focused ion beam. A deposit is formed with linewidth equal to the beam diameter which can be below 0.1 Ό m. At small beam diameters and low currents (50–100 pA) the time to deposit 1Όm3 is in the vicinity of 10–20 sec. If the gas is a hydrocarbon, the deposit is largely carbon, which is useful for photomask repair. On the other hand, if the gas is a metal halide or a metal organic, the deposit is metallic. The deposits have substantial concentrations of impurities due to the atoms in the organometallic, to the ion species used, or to the ambient in the vacuum chamber. Thus the resistivities of the "metal" films deposited typically range from 150 to 1000 ΌΏcm which is usable for some repairs. (Pure metals have resistivities in the range 2.5 to 12 pQcm.) We have deposited gold from dimethyl gold hexafluoro acetylacetonate and have achieved linewidths down to 0.1 Όm, patches of 1 Όm thickness with steep side walls and in some cases, resistivities approaching the bulk value. Other workers have reported deposits of Al, W, Ta, and Cr. We will review previous work in the field and present some of our own current results.


Sign in / Sign up

Export Citation Format

Share Document