Growth Chemistry of Nanocrystalline Si:H Films

2005 ◽  
Vol 862 ◽  
Author(s):  
Vikram L. Dalal ◽  
Kamal Muthukrishnan ◽  
Daniel Stieler ◽  
Max Noack

AbstractWe report on the growth of nanocrystalline Si:H films using both plasma CVD and remote hot wire deposition under systematically varied growth conditions. The films were grown from mixtures of silane and hydrogen. It was found that when the films were grown under low pressure VHF plasma growth conditions, the orientation of the film changed as the pressure increased. At the lowest pressures, the films were mainly <111> oriented, but changed to <220> orientation as the pressure increased. The grain size increased as the growth temperature increased. When the films were grown using remote hot wire deposition, the orientation depended upon both hydrogen dilution and growth temperature. As the hydrogen dilution increased, the <220> grain size became smaller. Grain size as large as 36 nm was obtained by controlling the growth conditions in hot wire deposition. As the growth temperature increased, the size of <220> grains increased. Growth rates also increased with increasing temperature. The data can be explained by invoking a growth model which recognizes that the natural growth direction for Si is <220>, since the surface energy is highest for (220) plane. Random nucleation leads to <220> grains. Bonded H is believed to inhibit the growth of <220> grains.

2007 ◽  
Vol 989 ◽  
Author(s):  
Kamal Muthukrishnan ◽  
Vikram Dalal ◽  
Max Noack

AbstractWe report on the growth and properties of nanocrystalline Si:H grown using a remote hot wire deposition system. Unlike previous results, the temperature of the substrate is not significantly affected by the hot filament in our system. The crystallinity of the growing film and the type of grain structure was systematically varied by changing the filament temperature and the degree of hydrogen dilution. It was found that high hydrogen dilution gave rise to random nucleation and <111> grain growth, whereas lower hydrogen dilution led to preferable growth of <220> grains. Similarly, a high filament temperature gave rise to preferential <111> growth compared to lower filament temperature. The electronic properties such as defect density and minority carrier diffusion length were studied as a function of the degree of crystallinity. It was found that the lowest defect density was obtained for a material which had an intermediate range of crystallnity, as determined from the Raman spectrum. Both highly amorphous and highly crystalline materials gave higher defect densities. The diffusion lengths were measured using a quantum efficiency technique, and were found to be the highest for the mid-range crystalline material. The results suggest that having an amorphous tissue surrounding the crystalline grain helps in passivating the grain boundaries.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2449 ◽  
Author(s):  
Takeshi Ohgaki ◽  
Isao Sakaguchi ◽  
Naoki Ohashi

Scandium nitride (ScN) films were grown on α-Al2O3( 1 1 ¯ 02 ) substrates using the molecular beam epitaxy method, and the heteroepitaxial growth of ScN on α-Al2O3( 1 1 ¯ 02 ) and their electric properties were studied. Epitaxial ScN films with an orientation relationship (100)ScN || ( 1 1 ¯ 02 )α-Al2O3 and [001]ScN || [ 11 2 ¯ 0 ]α-Al2O3 were grown on α-Al2O3( 1 1 ¯ 02 ) substrates. Their crystalline orientation anisotropy was found to be small. In addition, [100] of the ScN films were tilted along [ 1 ¯ 101 ] of α-Al2O3( 1 1 ¯ 02 ) in the initial stage of growth. The tilt angle between the film growth direction and [100] of ScN was 1.4–2.0° and increased with growth temperature. The crystallinity of the ScN films also improved with the increasing growth temperature. The film with the highest Hall mobility was obtained at the boundary growth conditions determined by the relationship between the crystallinity and the nonstoichiometric composition because the film with the highest crystallinity was obtained under the Sc-rich growth condition. The decreased Hall mobility with a simultaneous improvement in film crystallinity was caused by the increased carrier scattering by the ionized donors originating from the nonstoichiometric composition.


2011 ◽  
Vol 49 (01) ◽  
pp. 58-63
Author(s):  
Hye-Young Yoon ◽  
Je-Hyun Lee ◽  
Hyeong-Min Jung ◽  
Seong-Moon Seo ◽  
Chang-Young Jo ◽  
...  

2002 ◽  
Vol 715 ◽  
Author(s):  
Keda Wang ◽  
Haoyue Zhang ◽  
Jian Zhang ◽  
Jessica M. Owens ◽  
Jennifer Weinberg-Wolf ◽  
...  

Abstracta-Si:H films were prepared by hot wire chemical vapor deposition. One group was deposited at a substrate temperature of Ts=250°C with varied hydrogen-dilution ratio, 0<R<10; the other group was deposited with fixed R=3 but a varied Ts from 150 to 550°C. IR, Raman and PL spectra were studied. The Raman results indicate that there is a threshold value for the microstructure transition from a- to μc-Si. The threshold is found to be R ≈ 2 at Ts = 250°C and Ts ≈ 200°C at R=3. The IR absorption of Si-H at 640 cm-1 was used to calculate the hydrogen content, CH. CH decreased monotonically when either R or Ts increased. The Si-H stretching mode contains two peaks at 2000 and 2090 cm-1. The ratio of the integral absorption peaks I2090/(I2090+I2090) showed a sudden increase at the threshold of microcrystallinity. At the same threshold, the PL features also indicate a sudden change from a- to μc-Si., i.e. the low energy PL band becomes dominant and the PL total intensity decreases. We attribute the above IR and PL changes to the contribution of microcrystallinity, especially the c-Si gain-boundaries.


2008 ◽  
Vol 600-603 ◽  
pp. 207-210 ◽  
Author(s):  
Marcin Zielinski ◽  
Marc Portail ◽  
Thierry Chassagne ◽  
Yvon Cordier

We discuss the influence of the growth conditions (composition of the gaseous phase, growth duration, growth temperature) and wafer properties (orientation, miscut, thickness) on the residual strain of 3C-SiC films grown on silicon substrates. We show that the strain related effects are observed for both studied orientations however some of them (namely the creep effects) were up to now stated only for (100) oriented layers. We also point out the main difference in strain control between the (111) and (100) orientations.


2011 ◽  
Vol 347-353 ◽  
pp. 870-873
Author(s):  
Chun Rong Xue

Nanocrystalline silicon film has become the research hit of today’ s P-V solar technology. It’s optical band gap was controlled through changing the grain size and crystalline volume fraction for the quanta dimension effect. The crystalline volume fraction in nc-Si:H is modulated by varying the hydrogen concentration in the silane plasma. Also, the crystallinity of the material increases with increasing hydrogen dilution ratio, the band tail energy width of the nc-Si:H concurrently decreases. Two sets of nc-Si:H solar cells were made with different layer thicknesss, their electronic and photonic bandgap, absorption coefficient, optical band gap, nanocrystalline grain size(D), and etc have been stuied. In addition, we discussed the relationship between the stress of nc-Si thin films and H2 ratio. At last nc-Si:H solar cells have been designed and prepared successfully in the optimized processing parameters.


2001 ◽  
Vol 664 ◽  
Author(s):  
Maribeth Swiatek ◽  
Jason K. Holt ◽  
Harry A. Atwater

ABSTRACTWe apply a rate-equation pair binding model of nucleation kinetics [1] to the nucleation of Si islands grown by hot-wire chemical vapor deposition on SiO2 substrates. Previously, we had demonstrated an increase in grain size of polycrystalline Si films with H2 dilution from 40 nm using 100 mTorr of 1% SiH4 in He to 85 nm with the addition of 20 mTorr H2. [2] This increase in grain size is attributed to atomic H etching of Si monomers rather than stable Si clusters during the early stages of nucleation, decreasing the nucleation density. Atomic force microscopy (AFM) measurements show that the nucleation density increases sublinearly with time at low coverage, implying a fast nucleation rate until a critical density is reached, after which grain growth begins. The nucleation density decreases with increasing H2 dilution (H2:SiH4), which is an effect of the etching mechanism, and with increasing temperature, due to enhanced Si monomer diffusivity on SiO2. From temperature-dependent measurements, we estimate the activation energy for surface diffusion of Si monomers on SiO2 to be 0.47 ± 0.09 eV. Simulations of the temperature-dependent supercritical cluster density lead to an estimated activation energy of 0.42 eV ± 0.01 eV and a surface diffusion coefficient prefactor of 0.1 ± 0.03 cm2/s. H2-dilution-dependent simulations of the supercritical cluster density show an approximately linear relationship between the H2 dilution and the etch rate of clusters.


1993 ◽  
Vol 46 (3) ◽  
pp. 435
Author(s):  
C Jagadish ◽  
A Clark ◽  
G Li ◽  
CA Larson ◽  
N Hauser ◽  
...  

Undoped and doped layers of gallium arsenide and aluminium gallium arsenide have been grown on gallium arsenide by low-pressure metal organic vapour-phase epitaxy (MOVPE). Delta doping and growth on silicon substrates have also been attempted. Of particular interest in the present study has been the influence of growth parameters, such as growth temperature, group III mole fraction and dopant flow, on the electrical and physical properties of gallium arsenide layers. An increase in growth temperature leads to increased doping efficiency in the case of silicon, whereas the opposite is true in the case of zinc. Deep level transient spectroscopy (DTLS) studies on undoped GaAs layers showed two levels, the expected EL2 level and a carbon-related level. The determination of optimum growth conditions has allowed good quality GaAs and AlGaAs epitaxial layers to be produced for a range of applications.`


2011 ◽  
Vol 1308 ◽  
Author(s):  
Andreas Bill ◽  
Ralf B. Bergmann

ABSTRACTWe present an overview of the theory developed over the last few years to describe the crystallization of amorphous solids. The microstructure of the crystallizing solid is described in terms of the grain size distribution (GSD). We propose a partial differential equation that captures the physics of crystallization in random nucleation and growth processes. The analytic description is derived for isotropic and anisotropic growth rates and allows for the analysis of different stages of crystallization, from early to full crystallization. We show how the timedependence of effective nucleation and growth rates affect the final distribution. In particular, we demonstrate that for cases described by the Kolmogorov-Avrami-Mehl-Johnson (KAMJ) model applicable to a large class of crystallization processes a lognormal type distribution is obtained at full crystallization. The application of the theory to the crystallization of silicon thin films is discussed.


Sign in / Sign up

Export Citation Format

Share Document