Analysis of the Interfacial Reaction Between Sn-3.5Ag and Electroplating Interlayers

2005 ◽  
Vol 863 ◽  
Author(s):  
S.M. Yang ◽  
Y.Y. Chang ◽  
Weite Wu

AbstractAt present, Pb-free process is imperative in the electronic packaging industry. Many reports focus on Pb-free solder to improve the solderability, it seems not obtain wettability as good as SnPb solder. In this study, an alloy interlayer with different content was deposited on Cu to balance wettability and diffusion barrier in the interface of joint by electroplating process. There are three types of interlayers including Cu, Ni, and SnNi alloy. The interlayer may react with Sn-3.5Ag solder during reflow process. Sn-Ni alloy plating layer is selected to improve wettability and provide diffusion barrier at the same time in soldering process. For interfacial microstructure examination, morphology characterization can be obtained by using scanning electron microscope (SEM) and energy-dispersive x-ray analysis (EDX). The structure of IMC is identified by x-ray diffraction (XRD).

2009 ◽  
Vol 131 (1) ◽  
Author(s):  
Xiaoqin Lin ◽  
Le Luo

Lead-free solder bumping and its related interconnection and reliability are becoming one of the important issues in today’s electronic packaging industry. In this paper, alloy electroplating was used as SnAg solder bumping process. Multiple reflow was preformed on as-plated solder bumps. Scanning electron microscopy and energy dispersive X-ray analysis were used to investigate the intermetallic compound and microvoids of cross-sectioned solder bump. Shear test was used to evaluate the reliabilities of the SnAg bumps. The 13×13 area-array Sn/3.0Ag solder bumps of 70 μm in height and 90 μm in diameter were fabricated with a smooth and shiny surface and with a uniform distribution of Ag. During multireflow, the scalloped Cu6Sn5 phase grows by a ripening process. Volume shrinkage was the main reason for the formation of microvoids during multireflow. The average shear strength of solder bumps on TiW/Cu under bump metallurgy (UBM) increased with reflow times. The electroplating process is suitable for mass production of well-controlled geometry and uniformity of SnAg solder bumps. Microvoids have trivial negative impacts on the solder bonds. The combination of TiW/Cu UBM and SnAg solder is reliable.


Author(s):  
Claire Ryan ◽  
Jeff M. Punch ◽  
Bryan Rodgers ◽  
Greg Heaslip ◽  
Shane O’Neill ◽  
...  

A European Union ban on lead in most electrical and electronic equipment will be imposed as of July 1st 2006. The ban, along with market pressures, means that manufacturers must transfer from a tin-lead soldering process to a lead-free process. In this paper the implications on the surface mount (SMT) soldering process are presented. A set of experiments was conducted to investigate the screen-printing and reflow steps of the SMT process using a tin-silver-copper (95.5Sn3.8Ag0.7Cu) solder and a baseline of standard tin-lead (63Sn37Pb). 10×10 arrays of micro Ball Grid Array (micro-BGA) components mounted on 8-layer FR4 printed wiring boards (PWBs) were used. The screen-printing experiment addressed the deposition of the solder paste on the board. The parameters used in the investigation were print speed, squeegee pressure, snap-off distance, separation speed and cleaning interval, with the responses being measurements of paste height and volume. Optimum screen-printer settings were determined which give adequate paste volume and height and a good print definition. The reflow experiment investigated the following parameters of the temperature profile: preheat, soak, peak and cool down temperatures, and conveyor speed. The resulting solder joints were evaluated using cross-section analysis and x-ray techniques in order to determine the presence of defects. A mechanical fatigue test was also carried out in order to compare the strength of the solder joints. The overall quality of the lead-free solder joints was determined from these tests and compared to that of tin-lead. The outcome is a set of manufacturing guidelines for transferring to lead-free solder including optimum screen-printer and reflow oven settings for use with an SnAgCu solder.


2015 ◽  
Vol 27 (2) ◽  
pp. 76-83 ◽  
Author(s):  
Jibing Chen ◽  
Yanfang Yin ◽  
Jianping Ye ◽  
Yiping Wu

Purpose – The purpose of this paper is to investigate the thermal fatigue behavior of a single Sn-3.0Ag-0.5Cu (SAC) lead-free and 63Sn-37Pb (SnPb) solder joint treated by rapidly alternating heating and cooling cycles. Design/methodology/approach – With the application of electromagnetic-induced heating, the specimen was heated and cooled, controlled with a system that uses a fuzzy logic algorithm. The microstructure and morphology of the interface between the solder ball and Cu substrate was observed using scanning electron microscopy. The intermetallic compounds and the solder bump surface were analyzed by energy-dispersive X-ray spectroscopy and X-ray diffraction, respectively. Findings – The experimental results showed that rapid thermal cycling had an evident influence on the surface and interfacial microstructure of a single solder joint. The experiment revealed that microcracks originate and propagate on the superficial oxide of the solder bump after rapid thermal cycling. Originality/value – Analysis, based on finite element modeling and metal thermal fatigue mechanism, determined that the rimous cracks can be explained by the heat deformation theory and the function of temperature distribution in materials physics.


2015 ◽  
Vol 754-755 ◽  
pp. 508-512
Author(s):  
M.A.A. Mohd Salleh ◽  
A. Sugiyama ◽  
Hideyuki Yasuda ◽  
Stuart D. McDonald ◽  
Kazuhiro Nogita

This paper demonstrates the development of an experimental technique of in-situ observation for soldering of Sn-0.7wt%Cu lead-free solder on a Cu substrate which was achieved for the first time by synchrotron X-ray imaging. Reactions between liquid solder and Cu substrate during a soldering process were able to be recorded in real-time. Individual stages of the soldering process consisted of flux activation in removal of Cu oxide, solder melting and contact with the Cu substrate (wetting) and intermetallic compound (IMC) and void formation between the solder and Cu substrate. The technique development which includes experimental setup with calculated optimum beam energy in the range of 20 – 30 keV appears to result in a clear observation of real-time X-ray imaging of the soldering process. This technique provides a key method to understand the mechanism of formation of micro-electronic inter-connects for future electronic packaging applications.


Author(s):  
Marián Drienovský ◽  
Lýdia Rízeková Trnková ◽  
Roman Čička ◽  
Pavol Priputen ◽  
Marcela Pekarčíková ◽  
...  

Abstract The influence of increased Cu and Ag contents on the microstructure evolution in the utilized Sn-0.3Ag-0.7Cu (wt. %) solder was studied. The utilized solder was exploited in the wave soldering process at the temperatures of about 260 °C for several days. The samples investigation involved the differential scanning calorimetry, the scanning electron microscopy including the energy dispersive X-ray spectroscopy, and the X-ray diffraction techniques. To predict phase equilibria at various temperatures and temperature dependences of heat capacity, the Thermo-Calc software and the COST531 lead-free solder database were used. The original and the utilized solders were found to be very similar regarding the phase occurrence, but slightly differ from one another in microstructure evolution due to higher bulk contents of Cu in the latter solder. The obtained results contribute to both the better understanding of the microstructure evolution in low-silver Sn-Ag-Cu solders and the determination of compositional limits for those solders used in the wave soldering process.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1615
Author(s):  
Qiong Li ◽  
Jürgen Gluch ◽  
Zhongquan Liao ◽  
Juliane Posseckardt ◽  
André Clausner ◽  
...  

Fossil frustules of Ellerbeckia and Melosira were studied using laboratory-based nano X-ray tomography (nano-XCT), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). Three-dimensional (3D) morphology characterization using nondestructive nano-XCT reveals the continuous connection of fultoportulae, tube processes and protrusions. The study confirms that Ellerbeckia is different from Melosira. Both genera reveal heavily silicified frustules with valve faces linking together and forming cylindrical chains. For this cylindrical architecture of both genera, valve face thickness, mantle wall thickness and copulae thickness change with the cylindrical diameter. Furthermore, EDS reveals that these fossil frustules contain Si and O only, with no other elements in the percentage concentration range. Nanopores with a diameter of approximately 15 nm were detected inside the biosilica of both genera using TEM. In situ micromechanical experiments with uniaxial loading were carried out within the nano-XCT on these fossil frustules to determine the maximal loading force under compression and to describe the fracture behavior. The fracture force of both genera is correlated to the dimension of the fossil frustules. The results from in situ mechanical tests show that the crack initiation starts either at very thin features or at linking structures of the frustules.


2012 ◽  
Vol 562-564 ◽  
pp. 188-191
Author(s):  
Keh Moh Lin ◽  
Yang Hsien Lee ◽  
Wen Yeong Huang ◽  
Po Chun Hsu ◽  
Chin Yang Huang ◽  
...  

To find out the important factors which decisively affect the soldering quality of photovoltaic modules, solar cells were soldered under different conditions (different temperatures, PbSn vs. SnAgCu solder, manual vs. semi-automatic). Experimental results show that the soldering quality of PbSn under 350°C in the semi-automatic soldering process was quite stable while the soldering quality of lead-free solder was generally unacceptable in the manual or semi-automatic process under different temperatures. This result indicates that the soldering process with lead-free solder still needs to be further improved. It was also found that most cracks were formed on the interface between the solder and the silver paste and then expanded outwards.


2010 ◽  
Vol 74 ◽  
pp. 38-47
Author(s):  
Clay Mortensen ◽  
Paul Zschack ◽  
David C. Johnson

The evolution of designed [(Ti-Te)]x[(Sb-Te)]y, [(Bi-Te)]x[(Sb-Te)]y, [(Ti-Te)]w[(Bi-Te)]x[(Sb-Te)]y and [(Ti-Te)]w[(Bi-Te)]x[(Ti-Te)]y[(Sb-Te)]z precursors were followed as a function of annealing temperature and time using both low and high angle x-ray diffraction techniques to probe the self assembly into nanolaminate materials. The [(Bi-Te)]x[(Sb-Te)]y precursors were found to interdiffuse at low temperatures to form a (BixSb1-x)2Te3 alloy. The [(Ti-Te)]x[(Bi-Te)]y and [(Ti-Te)]x[(Sb-Te)]y precursors formed ordered nanolaminates [{(TiTe2)}1.35]x[Bi2Te3]y and [{(TiTe2)}1.35]x[Sb2Te3]y respectively. The [(Ti-Te)]w[(Bi-Te)]x[(Sb-Te)]x precursors formed [{(TiTe2)}1.35]w[(Bi0.5Sb0.5)2Te3]2x nanolaminates on annealing, as the bismuth and antimony layers interdiffused. Over the range of TiTe2 thicknesses used in [(Ti-Te)]w[(Bi-Te)]x[(Ti-Te)]y[(Sb-Te)]z precursors, Bi and Sb were found to interdiffuse through the 2-4 nm thick Ti-Te layers, resulting in the formation of (BixSb1-x)2Te3 alloy layers as part of the final nanolaminated products. When the Bi-Te and Sb-Te thicknesses were equal in the amorphous precursors, symmetric [{(TiTe2)}1.35]m[(Bi0.5Sb0.5)2Te3]n nanolamiantes were formed. When the thicknesses of Bi-Te and Sb-Te layers were not equal in the amorphous precursor, asymmetric [(TiTe2)1.35]m[(BixSb1-x)2Te3]n[(TiTe2)1.35]m[(BixSb1-x)2Te3]p nanolaminates were formed. These results imply that to form (A)w(B)x(C)y nanolaminates using designed layered precursors all three components must be immiscible. To form (A)x(B)y(A)x(C)z nanolaminates, the components must be immiscible or the precursor to the A component and the A component itself must be an effective interdiffusion barrier preventing B and C from mixing.


2015 ◽  
Vol 772 ◽  
pp. 284-289 ◽  
Author(s):  
Sabuj Mallik ◽  
Jude Njoku ◽  
Gabriel Takyi

Voiding in solder joints poses a serious reliability concern for electronic products. The aim of this research was to quantify the void formation in lead-free solder joints through X-ray inspections. Experiments were designed to investigate how void formation is affected by solder bump size and shape, differences in reflow time and temperature, and differences in solder paste formulation. Four different lead-free solder paste samples were used to produce solder bumps on a number of test boards, using surface mount reflow soldering process. Using an advanced X-ray inspection system void percentages were measured for three different size and shape solder bumps. Results indicate that the voiding in solder joint is strongly influenced by solder bump size and shape, with voids found to have increased when bump size decreased. A longer soaking period during reflow stage has negatively affectedsolder voids. Voiding was also accelerated with smaller solder particles in solder paste.


Sign in / Sign up

Export Citation Format

Share Document