Control of Bipolar Junction Transistor Current Grain Using Rapid Thermal Processing.

1987 ◽  
Vol 92 ◽  
Author(s):  
A. Kermani ◽  
F. Van Gieson ◽  
S. Litwin ◽  
R. Sullivan ◽  
T. J. DeBolske ◽  
...  

ABSTRACTThe activation of ion implanted emitters for two types of NPN bipolar junction transistors ( BJT ) by rapid thermal processing (RTP) was evaluated. The dopant profiles and the resultant junction depths were measured for various thermal cycles, using spreading resistance profile technique. The electrical characteristics of the transistors were then determined and compared to the standard furnace processes. The common emitter current gain values, hFE, for arsenic emitters were low and phosphorous emitters exhibited improved or comparable betas. The breakdown voltages in common emitter configuration, BV,CEO, BVcEs and BVEBO were comparable or better than the furnace annealed samples and no evidence of transistor leakage was observed.

2009 ◽  
Vol 615-617 ◽  
pp. 821-824 ◽  
Author(s):  
Kenichi Nonaka ◽  
Akihiko Horiuchi ◽  
Yuki Negoro ◽  
Kensuke Iwanaga ◽  
Seiichi Yokoyama ◽  
...  

A new 4H-SiC Bipolar Junction Transistor with Suppressed Surface Recombination structure: SSR-BJT has been proposed to improve the common emitter current gain which is one of the main issues for 4H-SiC BJTs. A Lightly Doped N-type layer (LDN-layer) between the emitter and base layers, and a High Resistive P-type region (HRP-region) formed between the emitter mesa edge and the base contact region were employed in the SSR-BJT. A fabricated SSR-BJT showed a maximum current gain of 134 at room temperature with a specific on-resistance of 3.2 mΩcm2 and a blocking voltage VCEO of 950 V. The SSR-BJT kept a current gain of 60 at 250°C with a specific on-resistance of 8 mΩcm2. To our knowledge, these current gains are the highest among 4H-SiC BJTs with a blocking voltage VCEO more than about 1000 V which have been ever reported.


2005 ◽  
Vol 483-485 ◽  
pp. 901-904 ◽  
Author(s):  
Sumi Krishnaswami ◽  
Anant K. Agarwal ◽  
Craig Capell ◽  
Jim Richmond ◽  
Sei Hyung Ryu ◽  
...  

1000 V Bipolar Junction Transistor and integrated Darlington pairs with high current gain have been developed in 4H-SiC. The 3.38 mm x 3.38 mm BJT devices with an active area of 3 mm x 3 mm showed a forward on-current of 30 A, which corresponds to a current density of 333 A/cm2, at a forward voltage drop of 2 V. A common-emitter current gain of 40 was measured on these devices. A specific on-resistance of 6.0 mW-cm2 was observed at room temperature. The onresistance increases at higher temperatures, while the current gain decreases to 30 at 275°C. In addition, an integrated Darlington pair with an active area of 3 mm x 3 mm showed a collector current of 30 A at a forward drop of 4 V at room temperature. A current gain of 2400 was measured on these devices. A BVCEO of 1000 V was measured on both of these devices.


2009 ◽  
Vol 1195 ◽  
Author(s):  
Yuki Watabe ◽  
Taku Tajima ◽  
Tohru Nakamura

AbstractDegradation of current gain for ion implanted 4H-SiC bipolar junction transistor is described. The influence of bandgap-narrowing to the collector and base currents of the transistor was investigated using ISE-TCAD simulator. Simulated results show good agreement with the measured results, which show that the common emitter current gain of 3.9 is obtained at a maximum base concentration of 2×1017/cm3 and a maximum emitter concentration of 4×1019/cm3 for ion implanted 4H-SiC BJTs.


2009 ◽  
Vol 615-617 ◽  
pp. 829-832 ◽  
Author(s):  
Jian Hui Zhang ◽  
Leonid Fursin ◽  
Xue Qing Li ◽  
Xiao Hui Wang ◽  
Jian Hui Zhao ◽  
...  

This work reports 4H-SiC bipolar junction transistor (BJT) results based upon our first intentionally graded base BJT wafer with both base and emitter epi-layers continuously grown in the same reactor. The 4H-SiC BJTs were designed to improve the common emitter current gain through the built-in electrical fields originating from the grading of the base doping. Continuously-grown epi-layers are also believed to be the key to increasing carrier lifetime and high current gains. The 4H-SiC BJT wafer was grown in an Aixtron/Epigress VP508, a horizontal hot-wall chemical vapor deposition reactor using standard silane/propane chemistry and nitrogen and aluminum dopants. High performance 4H-SiC BJTs based on this initial non-optimized graded base doping have been demonstrated, including a 4H-SiC BJT with a DC current gain of ~33, specific on-resistance of 2.9 mcm2, and blocking voltage VCEO of over 1000 V.


2000 ◽  
Vol 622 ◽  
Author(s):  
A.P. Zhang ◽  
G. Dang ◽  
F. Ren ◽  
J. Han ◽  
C. Monier ◽  
...  

ABSTRACTWe report on the dc performance of the first GaN pnp bipolar junction transistor. The structure was grown by MOCVD on c-plane sapphire substrates and mesas formed by low damage Inductively Coupled Plasma etching with a Cl2/Ar chemistry. The dc characteristics were measured up to VBC of 65 V in the common base mode and at temperatures up to 250°C. Under all conditions, IC ∼ IE indicated higher emitter injection efficiency. The offset voltage was ≤ 2 V and the devices were operated up to power densities of 13.9 kW·cm−2.


2008 ◽  
Vol 600-603 ◽  
pp. 1171-1174 ◽  
Author(s):  
K.G.P. Eriksson ◽  
Martin Domeij ◽  
Hyung Seok Lee ◽  
Carl Mikael Zetterling ◽  
Mikael Östling

To determine the maximum allowed power dissipation in a power transistor, it is important to determine the relationship between junction temperature and power dissipation. This work presents a new method for measuring the junction temperature in a SiC bipolar junction transistor (BJT) that is self-heated during DC forward conduction. The method also enables extraction of the thermal resistance between junction and ambient by measurements of the junction temperature as function of DC power dissipation. The basic principle of the method is to determine the temperature dependent I-V characteristics of the transistor under pulsed conditions with negligible self-heating, and compare these results with DC measurements with self-heating. Consistent results were obtained from two independent temperature measurements using the temperature dependence of the current gain, and the temperature dependence of the base-emitter I-V characteristics, respectively.


Author(s):  
Abdenabi Ali Elamin ◽  
Waell H Alawad

This paper describes the effects of 60Cogamma radiation hardness of characteristic and parameters of Bipolar Junction Transistors in order to analyze the performance changes of the individual devices used in nuclear field. Bipolar Junction Transistor (BJT) of the type (BC-301) (npn) silicon, Transistor was irradiated by gamma radiation using 60Cosource at different doses (1, 2, 3, 4, and 5) KGy. The characteristics and parameter of Bipolar Junction Transistor was studied before and after irradiated by using Transistor Characteristics Apparatus with regulated power supplies. Obtained result showed that, the saturation voltage VCE(sat) of Bipolar Junction Transistor decreased because of the gain degradation of the transistor and increased silicon resistivity, Another parameter of a bipolar junction transistor affected by ionizing radiation is a collector-base leakage current, a strong increase of the current is caused by the build-up charge near the junction.


2019 ◽  
Vol 34 (4) ◽  
pp. 045001
Author(s):  
Yourun Zhang ◽  
Hang Chen ◽  
Maojiu Luo ◽  
Juntao Li ◽  
Wen Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document