scholarly journals Determining the influence exerted by the static conditions of final squeezing on the compaction process of iron-based powder materials

2021 ◽  
Vol 1 (1 (109)) ◽  
pp. 63-68
Author(s):  
Anatoly Minitsky ◽  
Nataliya Minitska ◽  
Oleksandr Okhrimenko ◽  
Dmytro Krasnovyd

This paper reports a study into the process of re-compaction of powder briquettes in the conditions of static pressing at a pressure of 800 MPa. The technological parameters of the pressing process have been analyzed, which make it possible to improve the compaction of powder briquettes based on iron. Such parameters are the outer greasing, which reduces friction between a green compact and the walls of the press tool matrix, and the firing, which removes the deformation strengthening of the green compacts and increases their plasticity. The green compacts’ sealing mechanism involved in the final squeezing process has been established, which is associated with the grinding of pre-compressed particles due to the strain in the contact areas. The increase in the stressed state of green compacts following the final squeezing was confirmed by the results of studying the residual micro-strains. The change in the stressed state of iron green compacts has been confirmed by the study into the structurally sensitive characteristics, which include the materials’ magnetic and electrical properties. Determining the magnetic characteristics has shown that final squeezing leads to an increase in coercive force, which can be explained by both the increase in the stressed state and the grinding of grains. Investigating the impact exerted by the annealing environment on the value of magnetic characteristics has demonstrated that annealing in hydrogen is more effective in terms of improving magnetic properties than annealing in a vacuum. This is due to the refining of grain boundaries through the processes of reduction of oxide films. The study of the mechanical characteristics of green compact materials based on iron powder has established that final squeezing leads to an increase in the hardness and strength of materials depending on the conditions of deformation. A significant improvement in the green compacts’ strength (820‒824 MPa) is due to both a decrease in porosity by 8‒10 % and an increase in the contact area as a result of plastic deformation after the annealing

Author(s):  
Юрий Зубарев ◽  
Yuriy Zubarev ◽  
Александр Приемышев ◽  
Alexsandr Priyomyshev

Tool materials used for polymeric composite blank machining, kinds of tool material wear arising at machining these blanks, and also the impact of technological parameters upon tool wear are considered. The obtained results allow estimating the potentialities of physical models at polymeric composite blanks cutting.


1989 ◽  
Vol 6 (2) ◽  
pp. 319-328
Author(s):  
Salahudeen Yusuf

The history of Islam in part of what is known today as Nigeria datesto about the loth Century. Christianity dates to the late 18th Century. Bythe middle of the 19th Century, when Nigerian newspapers began to appearon the streets of Nigeria, both religions had won so many followers and extendedto so many places in Nigeria that very few areas were untouched bytheir influence. The impact of both religions on their adherents not only determinedtheir spiritual life, but influenced their social and political lives aswell. It therefore became inevitable that both religions receive coverage frommost of the newspapers of the time. How the newspapers as media of informationand communication reported issues about the two religions is thetheme of this paper.Rationale for the StudyThe purpose of this study is to highlight the context in which such earlynewspapers operated and the factors that dictated their performance. Thisis because it is assumed that when a society faces external threat to its territory,culture, and independence, all hands (the press inclusive) ought tobe on deck to resist the threat with all might. Were newspapers used as verbalartillery and how did they present each religion? It is also assumed thatin a multireligious society a true press should be objective and serve as avanguard in the promotion of the interest of the people in general and notcreate or foster an atmosphere of religious conflict. The study also aims atfinding out whether the papers promoted intellectual honesty and fosteredthe spirit of unity particularly when the society was faced with the encroachmentof the British who posed a threat to their freedom, culture, economy ...


Author(s):  
Kerstin Jurk ◽  
Katharina Neubauer ◽  
Victoria Petermann ◽  
Elena Kumm ◽  
Barbara Zieger

AbstractSeptins (Septs) are a widely expressed protein family of 13 mammalian members, recognized as a unique component of the cytoskeleton. In human platelets, we previously described that SEPT4 and SEPT8 are localized surrounding α-granules and move to the platelet surface after activation, indicating a possible role in platelet physiology. In this study, we investigated the impact of Sept8 on platelet function in vitro using Sept8-deficient mouse platelets. Deletion of Sept8 in mouse platelets caused a pronounced defect in activation of the fibrinogen receptor integrin αIIbβ3, α-granule exocytosis, and aggregation, especially in response to the glycoprotein VI agonist convulxin. In contrast, δ-granule and lysosome exocytosis of Sept8-deficient platelets was comparable to wild-type platelets. Sept8-deficient platelet binding to immobilized fibrinogen under static conditions was diminished and spreading delayed. The procoagulant activity of Sept8-deficient platelets was reduced in response to convulxin as determined by lactadherin binding. Also thrombin generation was decreased relative to controls. Thus, Sept8 is required for efficient integrin αIIbβ3 activation, α-granule release, platelet aggregation, and contributes to platelet-dependent thrombin generation. These results revealed Sept8 as a modulator of distinct platelet functions involved in primary and secondary hemostatic processes.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 560
Author(s):  
Luigi Formisano ◽  
Michele Ciriello ◽  
Christophe El-Nakhel ◽  
Marios C. Kyriacou ◽  
Youssef Rouphael

In the Italian culinary tradition, young and tender leaves of Genovese basil (Ocimum basilicum L.) are used to prepare pesto sauce, a tasty condiment that attracts the interest of the food processing industry. Like other leafy or aromatic vegetables, basil is harvested more than once during the crop cycle to maximize yield. However, the mechanical stress induced by successive cuts can affect crucial parameters associated with pesto processing (leaf/stem ratio, stem diameter, and dry matter). Our research accordingly aimed to evaluate the impact of successive harvests on three field-grown Genovese basil cultivars (“Aroma 2”, “Eleonora” and “Italiano Classico”) in terms of production, physiological behavior, and technological parameters. Between the first and second harvest, marketable fresh yield and shoot dry biomass increased by 148.4% and 172.9%, respectively; by contrast, the leaf-to-stem ratio decreased by 22.5%, while the dry matter content was unchanged. The increased fresh yield and shoot dry biomass at the second harvest derived from improved photosynthetic efficiency, which enabled higher net CO2 assimilation, Fv/Fm and transpiration as well as reduced stomatal resistance. Our findings suggest that, under the Mediterranean environment, “Italiano Classico” carries superior productive performance and optimal technological characteristics in line with industrial requirements. These promising results warrant further investigation of the impact successive harvests may have on the qualitative components of high-yielding basil genotypes with respect to consumer expectations of the final product.


2016 ◽  
Vol 7 (2) ◽  
pp. 86-92 ◽  
Author(s):  
Józef Kuczmaszewski ◽  
Ireneusz Zagórski ◽  
Piotr Zgórniak

Abstract This paper presents an overview of the state of knowledge on temperature measurement in the cutting area during magnesium alloy milling. Additionally, results of own research on chip temperature measurement during dry milling of magnesium alloys are included. Tested magnesium alloys are frequently used for manufacturing elements applied in the aerospace industry. The impact of technological parameters on the maximum chip temperature during milling is also analysed. This study is relevant due to the risk of chip ignition during the machining process.


2021 ◽  
Author(s):  
Qiang Zhong ◽  
De-yu Wang

Abstract Dynamic capacity is totally different from quasi-static capacity of ship structural components, although most ultimate strength analyses at present by researchers are performed under quasi-static conditions. To investigate the dynamic ultimate strength characteristics, the dynamic ultimate strength analyses of stiffened plates subjected to impact load were studied based on a 3-D nonlinear explicit finite element method (FEM) in this paper. The impact load in the present work is characterized as a half-sine function. A series of nonlinear finite element analyses are carried out using Budiansky-Roth (B-R) criterion. The influence of impact durations, model ranges, boundary conditions, initial imperfections and impact loads on the dynamic ultimate strength of stiffened plates are discussed. In addition, the ultimate strength of stiffened plates under the in-plane impact combined with lateral pressure was also calculated, which shows lateral pressure has a negligible effect on the dynamic ultimate strength of stiffened plates subjected to the impact load with short durations. Other important conclusions can be obtained from this paper, which are useful insights for the development of ultimate strength theory of ship structures and lay a good foundation for the study of dynamic ultimate strength in the future.


2014 ◽  
Vol 59 (3) ◽  
pp. 1037-1040 ◽  
Author(s):  
I. Vasková ◽  
M. Hrubovčáková ◽  
J. Malik ◽  
Š. Eperješi

Abstract Ductile cast iron (GS) has noticed great development in last decades and its boom has no analogue in history humankind. Ductile iron has broaden the use of castings from cast iron into areas, which where exclusively domains for steel castings. Mainly by castings, which weight is very high, is the propensity to shrinkage creation even higher. Shrinkage creation influences mainly material, construction of casting, gating system and mould. Therefore, the main realized experiment was to ascertain the influence of technological parameters of furane mixture on shrinkage creation in castings from ductile iron. Together was poured 12 testing items in 3 moulds forto determine and compare the impact of various technological parameters forms the propensity for shrinkage in the casting of LGG.


2019 ◽  
Vol 140 ◽  
pp. 02004
Author(s):  
Aleksey Ignatov ◽  
Rustam Subkhankulov

Numerous studies in application of modern composite materials show that their advantages can be successfully implemented in manufacturing «smart» products. This study proposes an improved technological method of manufacturing multilayer environmentally friendly products with a variable cross section, which allows us to expand the possibilities of using modern polymer composite materials (PCM). The technology allows manufacturing products of the most complex geometric shapes, such as wind turbine blades. The aim of the study is the technological support of engineering production in the manufacture of multilayer products of variable cross section made from PCM. Scientific novelty consists in identifying the patterns of implementation and management of the manufacturing process of multilayer products of variable cross-section, and establishing the influence of structural and technological parameters of the manufacturing process on their operational characteristics. The relationship between the pressure of a hot directed air stream and the volume fraction of pores in the hardened material of a multilayer composite product with a variable cross section during layer-by-layer application is investigated. During the study, fundamental and applied principles of mechanical engineering technology, material resistance, adhesion theory, mathematical statistics tools and software were used to process the results of the experiment. Based on the results of laboratory studies, a methodology has been developed for effective prediction of pore content in the manufacturing of composite products. The introduction of the presented technology and the corresponding original methodology into production will reduce the complexity and energy costs of manufacturing composite products, improve their quality and reduce the impact of toxic components from composite materials on workers.


Sign in / Sign up

Export Citation Format

Share Document