scholarly journals Improving the wear resistance of heavy-duty elements in tribomechanical systems by a combined laser-thermochemical processing method

2021 ◽  
Vol 3 (12 (111)) ◽  
pp. 6-13
Author(s):  
Myroslav Kindrachuk ◽  
Oleksandr Dukhota ◽  
Oleksandr Тіsov ◽  
Evgen Korbut ◽  
Alina Yurchuk ◽  
...  

This paper reports an analysis of the state of tribological support in the aviation industry. The use of surface strengthening technologies to extend the resource of friction node parts has been prioritized. Modern combined technologies of nitriding and laser treatment of steel surfaces have been reviewed. The mechanism has been elucidated that damages steel 30H2NVFA in the jackscrew actuator of transport aircraft flaps, which occurs due to insufficient surface hardness of the material after a generally accepted heat treatment. Auger electron spectroscopy analysis revealed a high concentration of oxygen on the surface: up to 41.4 at. %; the friction surface carbonation has been detected, especially significant at the surface of the pitting damage. A comprehensive technology of surface strengthening by nitriding+laser selective hardening has been suggested. The radiation power was 1 KW, the diameter of the focus spot was 2.5 mm, and the pitch between the focus spot centers was 2.5 mm. The total area of laser processing was 70 %. The steel temperature exceeded Ас3 and corresponded to the hardening temperature range. The depth of the nitrided layer increased to 400 µm, the maximum hardness on the surface was 1,350–1,380 HV0.2. The formation of a solid nitrided layer with a thickness of 200‒250 µm was observed, as well as a transition zone composed of column-shaped iron nitrides, which are introduced into the matrix material. As a result, a sharp gradient in the mechanical properties disappears. The tests confirmed that the wear resistance of the comprehensively treated surface was 2.1 times higher under dry friction conditions, and 4.5 times higher when lubricated with the "Era" grease (RF), compared with the 30H2NVFA steel nitrided by the conventional technology. In addition, there was no fragile destruction of the surface; the interaction with oxygen reduced significantly

2015 ◽  
Vol 812 ◽  
pp. 253-258
Author(s):  
Andrea Szilagyine Biro ◽  
Endre Szabo ◽  
Miklos Tisza

Ferritic nitrocarburising is a surface alloying heat treatment, which can provide to components high surface hardness, thus improved wear resistance. In structural steels the porosity of white layer has a key role in wear resistance: the porosity is undesirable. For tool steels the absence of white layer is undesirable. Floe process is one way to decrease the porosity of white layer. During our experiments we applied a modified Floe process on two different steels. The acontol of this process is simpler than conventional process. We measured the micro-hardness as a function of depth from the surface, and we made microscopic examination to analyse the structure of nitrided layer.


2014 ◽  
Vol 881-883 ◽  
pp. 1263-1267 ◽  
Author(s):  
Shuo Zhao ◽  
Liang Wang ◽  
Jiu Jun Xu ◽  
Y. Shan

The duplex stainless steel has better pitting corrosion resistance but lacks of hardness and wear resistance. Therefore, the low temperature nitriding treatment can be used to increase its hardness and wear resistance or to gain more perfect corrosion resistance. The plasma nitriding of SS2205 stainless steel was carried out at temperatures from 693k to 753k for 4 hours at anodic potential. The nitrided samples were analyzed by optical microscopy, X-ray diffraction, SEM-EDX analysis, microhardness testing, wear and corrosion evaluation. The XRD analysis of all treated samples showed that the nitrogen-expanded austenite phase was formed. Both α and γ phase of the substrate were transformed into γNduring plasma nitriding. Observing the nitrided layers formed on α and γ phase, the ones situated in the austenite were thinner than the ones in the ferrite. This phenomenon was more evident at low temperature, which confirmed that the nitrogen has a higher diffusion rate in the ferrite during plasma nitriding treatment. The surface hardness of nitrided layer was increased with the nitriding temperature. The highest hardness value obtained in this experiment was about 1300 HV0.05which was 4 times as the original sample (380 HV0.05). Furthermore, through the wear and corrosion property tests, it was shown that anodic plasma nitriding improved the wear resistance and corrosion resistance of the duplex stainless steel.


Alloy Digest ◽  
2013 ◽  
Vol 62 (8) ◽  

Abstract Carpenter CTS-BD30P alloy is a powder metal processed, air-hardening, martensitic stainless steel that offers corrosion resistance comparable with Type 440C stainless, combined with excellent toughness and wear resistance attributed to a high concentration of vanadium carbides. The Carpenter CTS family of alloys is used for many blade applications. This datasheet provides information on composition and physical properties. It also includes information on corrosion resistance as well as heat treating and powder metal forms. Filing Code: SS-1154. Producer or source: Carpenter Specialty Alloys.


Alloy Digest ◽  
2011 ◽  
Vol 60 (12) ◽  

Abstract Dillidur 450V is a water hardened wear-resistant steel with surface hardness at room temperature of 420-480 HB. The steel is easy to weld and bend. Hot working is not recommended. This datasheet provides information on composition, physical properties, hardness, tensile properties, and bend strength as well as fracture toughness. It also includes information on wear resistance as well as forming, heat treating, machining, and joining. Filing Code: SA-638. Producer or source: Dillinger Hütte GTS.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 85
Author(s):  
Alejandro González-Pociño ◽  
Florentino Alvarez-Antolin ◽  
Juan Asensio-Lozano

In this article, the effects of an ionic nitriding treatment are analysed, together with deliberate variation of different thermal parameters associated with the destabilisation of austenite, on erosive wear resistance of white cast irons with 25% Cr. The methodology followed in this research was an experimental design, where six factors were analyzed by performing eight experiments. The thickness of the nitrided layer is much smaller than in white cast iron with lower percentages in Cr, never reaching 20 microns. The nitriding treatment entails considerable softening of the material underneath the nitriding layer. This softening behaviour becomes partially inhibited when the destabilisation temperature of austenite is 1100 °C and dwell times at such temperature are prolonged. This temperature seems to play a significant role in the solubilization of non-equilibrium eutectic carbides, formed during industrial solidification. The nitriding treatment leads to additional hardening, which, in these cases, favours a second destabilisation of austenite, with additional precipitation of secondary carbides and the transformation of retained austenite into martensite. Despite softening of the material, the nitriding treatment, together with air-cooling after destabilisation of the austenite, allows a noticeable increase in resistance to erosive wear.


2013 ◽  
Vol 20 (03n04) ◽  
pp. 1350033 ◽  
Author(s):  
ŞERAFETTIN EKINCI ◽  
AHMET AKDEMIR ◽  
HUMAR KAHRAMANLI

Nitriding is usually used to improve the surface properties of steel materials. In this way, the wear resistance of steels is improved. We conducted a series of studies in order to investigate the microstructural, mechanical and tribological properties of salt bath nitrided AISI 4140 steel. The present study has two parts. For the first phase, the tribological behavior of the AISI 4140 steel which was nitrided in sulfinuz salt bath (SBN) was compared to the behavior of the same steel which was untreated. After surface characterization using metallography, microhardness and sliding wear tests were performed on a block-on-cylinder machine in which carbonized AISI 52100 steel discs were used as the counter face. For the examined AISI 4140 steel samples with and without surface treatment, the evolution of both the friction coefficient and of the wear behavior were determined under various loads, at different sliding velocities and a total sliding distance of 1000 m. The test results showed that wear resistance increased with the nitriding process, friction coefficient decreased due to the sulfur in salt bath and friction coefficient depended systematically on surface hardness. For the second part of this study, four artificial neural network (ANN) models were designed to predict the weight loss and friction coefficient of the nitrided and unnitrided AISI 4140 steel. Load, velocity and sliding distance were used as input. Back-propagation algorithm was chosen for training the ANN. Statistical measurements of R2, MAE and RMSE were employed to evaluate the success of the systems. The results showed that all the systems produced successful results.


2021 ◽  
Vol 19 (2) ◽  
pp. 77-82
Author(s):  
Fadhil K. Farhan ◽  
Aws Abbas Hussein ◽  
Ali Q. Tuama

The liquid and mechanical mixing method was used in addition to ultrasound technology to prepare samples according to standard conditions. The percentage of cementing with ceramic powder was adopted from 1% to 4% as a weight ratio, and by using mixing drivers, nanocomposites were prepared depending on the theoretical density of the components. The velvet density was measured using Archimedes' method, and the results showed a successive improvement and increase in density with the weight ratio of addition. The results of the particulate hardness test showed a significant improvement in the results of the prepared nanostructures compared to the base sample (pure epoxy). With regard to the properties of wear resistance (wear modulus) using the screw-on-disk method, the cemented samples showed a higher wear resistance compared to the base sample. The results were interpreted based on the values of density and hardness in addition to the properties possessed by the ceramic powder of high surface area and average granular size of 32 nanometers through scanning electron microscopy. In this work, nanostructures based on (a polymer) supported with nanoscale zirconium dioxide powder were developed.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Thella Babu Rao

One of the major advantages of metal matrix composites (MMCs) is that their tailorable properties meet the specific requirements of a particular application. This paper deals with the experimental investigations done on the effects of the reinforcement particulate size and content on the Al7075/SiC composite. The composites were manufactured using stir casting technique. The effect of SiC particle size (25, 50, and 75 μm) and particulate content (5, 10, and 15 wt %) on the microstructural, mechanical properties, and wear rate of the composites was studied and the results were analyzed for varied conditions of reinforcement. Scanning electron microscope (SEM) examinations were used to assess the dispersion of SiC particles reinforced into the matrix alloy and was found with reasonably uniform with minimal particle agglomerations and with good interfacial bonding between the particles and matrix material. X-ray diffraction (XRD) analysis confirmed the presence of Al and SiC with the composite. The results of mechanical tests showed that the increasing SiC particle size and content considerably enhanced the ultimate tensile strength and hardness of the composites while the ductility at this condition was decreased. The highest ultimate tensile strength of 310 MPa and hardness of 126 BHN were observed for the composites containing 15 wt %. SiC at 75 μm. Lesser the wear resistance of the reference alloy while it was enhanced up to 40% with the composites. The wear resistance was increased up to 1200 m of sliding distance for all the composites, whereas for the composite containing 75 μm SiC particles, it was extended up to 1800 m.


2010 ◽  
Vol 34-35 ◽  
pp. 1338-1342
Author(s):  
Zheng Guan Ni

through super-hard wear-resistant surface electrode surfacing D707 in Low-carbon steel. We have analysis the effect of welding process parameters and post-weld heat treatment process on low carbon steel surface hardness of cladding layer. The experimental results show that: after quenching hardness value no significant change; But after annealing the hardness value decreased and after annealing the crystal grain of the underlying tissues uniformization become tiny. micro-hardness testing is carried out in the weld cross-section, we have find out that from the base metal to the cladding layer the surface hardness values is getting higher and higher, while the indentation is getting smaller and smaller. Because hardness is a measure of wear resistance materials, thus it can indirectly show that when low-carbon steel surface electrode in the super-hard wear-resistant surfacing welding layer, it can improve the surface hardness of low carbon steel and improve wear resistance of low carbon steel surface.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3752
Author(s):  
Nenad Miloradović ◽  
Rodoljub Vujanac ◽  
Ana Pavlović

The composites samples based on ZA27 alloy were subjected to tribological tests and the observed results are presented in this paper. The samples (ZA27/5%SiC and ZA27/5%SiC/5%Gr) were obtained by compo-casting technique. Their wear behaviour was compared to the base alloy. The wear tests were done by using a block-on-disc tribometer under lubricated sliding conditions. Tribological investigation were conducted for three normal loads (40 N, 80 N, and 120 N), three sliding speeds (0.25 m/s, 0.5 m/s, and 1 m/s), and sliding distance of 1200 m. The tested materials were analysed by the scanning electronic microscope (SEM) and the energy dispersive spectrometry (EDS). The presence of oil lubricant improved the wear resistance and friction behaviour of both composites and base alloy. The tested composites show much higher wear resistance than the corresponding matrix material. It was established that the ZA27/5%SiC/5%Gr hybrid composite has best tribological properties.


Sign in / Sign up

Export Citation Format

Share Document