scholarly journals Comparative Study on Computer Simulation of Solar Shading Performance with Heliodon and Artificial Sky

2021 ◽  
Vol 8 (1) ◽  
pp. 50-64
Author(s):  
David B. Dalumo ◽  
◽  
Yaik-Wah Lim ◽  
◽  

Current technological advancement and the requirement for sustainability-driven practices has birthed increased demands for accuracy in performance and assessment of energy consumption in the built environment. Energy-efficient and sustainable building projects are to large extents dependent on achieving functional solar shading and sufficient daylighting in building interiors. Hence, the understanding and adequate evaluation of the sun and its dynamic influence on buildings right at the early stage of planning and design is essential for the development of performance-driven building designs. In this study, the performance simulation results of Integrated Environmental Solutions <Virtual Environment> software program modules are examined for accuracy in executing performance analysis of solar shading. This study assesses the shading prediction of Suncast; a virtual solar shading calculation tool, and RadianceIES for measuring daylight availability in a tropical climate region. The evaluation of shading performance with Suncast was validated through physical experiment by comparing the results obtained therein with shading analysis outcomes generated on a scale model with the aid of a heliodon. Likewise, RadianceIES daylighting simulations were compared with measurements realised from an artificial sky simulator. The results were further subjected to correlation tests to determine the relationship between simulation and physical experiment results. The computational evaluation approach presented more efficient means of conducting the performance simulations over the physical experiment methods which were limited by mechanical design of the components. Suncast and RadianceIES simulation results presented comparable equivalence with measurement output acquired from the heliodon and artificial sky respectively, with minimal variations in accuracy. Thus, demonstrating the ability of the computational simulation program in accurately predicting solar shading and daylight performance in buildings, this could benefit architects in the proper and efficient design of shading devices for building facades at early design stages.

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2510
Author(s):  
Konrad Górny ◽  
Piotr Kuwałek ◽  
Wojciech Pietrowski

The article proposes a proprietary approach to the diagnosis of induction motors allowing increasing the reliability of electric vehicles. This approach makes it possible to detect damage in the form of an inter-turn short-circuit at an early stage of its occurrence. The authors of the article describe an effective diagnostic method using the extraction of diagnostic signal features using an Enhanced Empirical Wavelet Transform and an algorithm based on the method of Ensemble Bagged Trees. The article describes in detail the methodology of the carried out research, presents the method of extracting features from the diagnostic signal and describes the conclusions resulting from the research. Phase current waveforms obtained from a real object as well as simulation results based on the field-circuit model of an induction motor were used as a diagnostic signal in the research. In order to determine the accuracy of the damage classification, simple metrics such as accuracy, sensitivity, selectivity, precision as well as complex metrics weight F1 and macro F1 were used.


Coatings ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 562
Author(s):  
Wei-Hsuan Hsu ◽  
Yi-Zhang Xie

With technological advancement, energy consumption and lack of energy supply are inevitable. Approximately 20% of total energy consumption is used for artificial light in standard office buildings. To reduce energy consumption for illumination purposes, a sunlight guiding panel was used to increase the amount of sunlight available indoors. However, in most designs of a sunlight guiding panel, the panel has to be placed on the outdoor surface of a window glass. This type of design is inconvenient for assembling and cleaning. To enhance the practicality of a sunlight guiding panel, we attempted to place the sunlight guiding panel on the indoor surface of a window glass. The simulation results revealed that when the sunlight guiding panel was placed on the indoor surface of a window glass, the aspect ratio of the light-guiding structure of the sunlight guiding panel had to be increased for guiding the sunlight from outdoors so as to increase the amount of sunlight indoors. To fabricate the proposed sunlight guiding panel, UV nanoimprint lithography was applied to pattern the light-guiding structure of the sunlight guiding panel. Moreover, a mold with a high-precision light-guiding structure was used in UV nanoimprint lithography. The mold was fabricated using ultraprecision machining technology. Both analytical and experimental investigations were conducted to confirm the proposed design. The average light-guiding efficiency was 89.9% with a solar elevation angle range of 35° to 65°, and the experimental results agreed well with the simulation results. This study elucidates light-guiding efficiency when the sunlight guiding panel is placed on the indoor surface of a window glass, which can increase the usage convenience and application potential of sunlight guiding panels.


2018 ◽  
Vol 159 ◽  
pp. 02030 ◽  
Author(s):  
Ojo Kurdi ◽  
Mohd Shukri Yob ◽  
Awisqarni Haji Ishamuddin ◽  
Agus Suprihanto ◽  
Susilo Adi Widyanto ◽  
...  

Torsional stiffness is important parameter of chassis that affect the handling performance of chassis. Torsional stiffness can be determined using Finite Element Method (FEM) in early stage design of its. In order to validate the FEM result, experimental work needs to be done. The fixture has been design in simpler stucture, flexible for any kind of chassis and using a simple measurement’s equipment such as dial indicator and load cell. Twist fixture has been designed for measuring of torsional stiffness of TATA cab chassis indirectly. The fixture measured the deflection caused by torsion subjected to the chassis. The torsional stiffness was calculated based on measured displacement of chassis. The result of comparison shows that the experimental results in agreement with the simulation results. Therefore, the simulation results of TATA cab chassis model are valid.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Young-Gon Kim ◽  
Kang Wook Kim

A clear and efficient design method for ultra-wideband microstrip-to-suspended stripline transition, which is based on the analytical expressions of the whole transitional structure, is presented. The conformal mapping is applied to obtain the characteristic impedance of the transitional structure within 2.85% accuracy as compared with the EM-simulation results. The transition is designed to provide broadband impedance matching and smooth field conversion. The implemented transition performs less than 0.6 dB insertion loss per transition for frequencies up to 30 GHz.


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1256 ◽  
Author(s):  
Luca Patané

Bio-inspired solutions are often taken into account to solve problems that nature took millions of years to deal with. In the field of robotics, when we need to design systems able to perform in unstructured environments, bio-inspiration can be a useful instrument both for mechanical design and for the control architecture. In the proposed work the problem of landslide monitoring is addressed proposing a bio-inspired robotic structure developed to deploy a series of smart sensors on target locations with the aim of creating a sensor network capable of acquiring information on the status of the area of interest. The acquired data can be used both to create models and to generate alert signals when a landslide event is identified in the early stage. The design process of the robotic system, including dynamic simulations and robot experiments, will be presented here.


2008 ◽  
Vol 33-37 ◽  
pp. 963-968
Author(s):  
Chun Yi Chu ◽  
Chung Ming Tan ◽  
Yung Chuan Chiou

The stress induced in a workpiece under nanocutting are analyzed by an atomic-scale model approach that is based on the energy minimization. Certain aspects of the deformation evolution during the process of nanocutting are addressed. This method needs less computational efforts than traditional molecular dynamics (MD) calculations. The simulation results demonstrate that the microscopic cutting deformation mechanism in the nanocutting process can be regarded as the instability of the crystalline structure in our atomistic simulations and the surface quality of the finished workpiece varies with the cutting depth.


Author(s):  
Thomas Behrendt ◽  
Stefan Hackemann ◽  
Peter Mechnich ◽  
Yuan Shi ◽  
Sandrine Hönig ◽  
...  

Ceramic matrix composites (CMC) offer the potential of increased service temperatures and are thus an interesting alternative to conventional combustor alloys. Tubular combustor liner demonstrators made of an oxide/oxide CMC were developed for a lean combustor in a future aero-engine in the medium thrust range and tested at engine conditions. During the design various aspects like protective coating, thermo-mechanical design, development of a failure model for the CMC as well as design and test of an attachment system were taken into account. The tests of the two liners were conducted at conditions up to 80% take-off. A new protective coating was tested successfully with a coating thickness of up to t=1 mm. Different inspection criteria were derived in order to detect crack initiation at an early stage for a validation of the failure model. With the help of detailed pre- and post-test computer tomography scans to account for the micro structure of the CMC the findings of the failure model were in reasonable agreement with the test results.


1996 ◽  
Vol 05 (02n03) ◽  
pp. 131-151 ◽  
Author(s):  
WEIMING SHEN ◽  
JEAN-PAUL A. BARTHES

Real world engineering design projects require the cooperation of multidisciplinary design teams using sophisticated and powerful engineering tools. The individuals or the individual groups of the multidisciplinary design teams work in parallel and independently often for quite a long time with different tools located on various sites. In order to ensure the coordination of design activities in the different groups or the cooperation among the different tools, it is necessary to develop an efficient design environment. This paper discusses a distributed architecture for integrating such engineering tools in an open design environment, organized as a population of asynchronous cognitive agents. Before introducing the general architecture and the communication protocol, issues about an agent architecture and inter-agent communications are discussed. A prototype of such an environment with seven independent agents located in several workstations and microcomputers is then presented and demonstrated on an example of a small mechanical design.


Author(s):  
Yoriharu Murata ◽  
Naoki Shibukawa ◽  
Itaru Murakami ◽  
Joji Kaneko ◽  
Kenichi Okuno

The titanium 48-inch last stage blade that has world’s largest class exhaust annulus area and tip speed for 60Hz steam turbines has been developed. Concept of this blade is to achieve high performance and compact design of steam turbine for 1000MW thermal power plant and 300MW combined cycle plant. In the design of this blade, the optimization design has been done by using the recent analysis technologies, three dimensional CFD in aerodynamic design and FEA in mechanical design. The blade has curved axial fir-tree dovetail, snubber cover both at the tip and at the mid-span. To achieve superior vibration characteristics, continuously coupled structure was adopted for blade connection. To confirm the validity of design, first, sub-scale model blades were provided and tested in model steam turbine test facilities. Second, one row of actual size blades were assembled on the wheel of test rotor and were exposed rotating vibration test in a wheel box. Finally, these blades were tested at actual steam conditions in a full scale steam turbine test facility. In this paper, aerodynamic and mechanical design features will be introduced, and the test results of both sub-scale and actual size blades under real steam turbine operating conditions will be presented.


Author(s):  
William Singhose ◽  
Christopher Adams ◽  
Dooroo Kim

When a product is a complex dynamic system that interacts directly with a human, engineers must consider a wide range of possible motions and forces that the device could exert on the human. Such an analysis goes beyond a simple thought exercise and requires detailed knowledge about the system dynamics and the operating environment. This paper presents such an analysis of inverted-pendulum human transporters. The list of hazards is constructed by using knowledge of the dynamics and mechanical design obtained through simulation and experimentation. However, the dynamics are so complex that the list is augmented with hazards that are revealed by studying accident videos posted on the Internet. The severity of the hazards is estimated using an energy-based measurement of the hazard onset conditions as well as compounding factors from the mechanical design. In addition, experimental and simulation results of sample hazard conditions illustrate their danger and severity. The analysis reveals that inverted-pendulum human transporters have several hazards with unacceptable risk.


Sign in / Sign up

Export Citation Format

Share Document