scholarly journals Microstructure, Physical Stability, and Rheological Properties of Salad Dressing Emulsions Supplemented with Various Pulse Flours

2013 ◽  
Vol 2 (2) ◽  
pp. 167 ◽  
Author(s):  
Zhen Ma ◽  
Joyce I. Boye

Significant opportunities exist for using pulses in the development of health promoting foods as consumers increasingly look for functional foods with disease prevention qualities. Pulse ingredients could be considered for use in the development of novel, value-added products such as salad dressing. In this study, the rheological properties, color, physical stability, and microstructure of model salad dressing emulsions supplemented with various types of pulse flours (red lentil, green lentil, desi chickpea, kabuli chickpea and yellow pea) were evaluated. Supplementation with pulse flours significantly increased (<em>P</em> &lt; 0.05) the consistency coefficient (<em>m</em>) and decreased (<em>P </em>&lt; 0.05) the flow behavior index (<em>n</em>) of the control dressing in accordance with the power law modelduring steady state flow tests. The pulse-supplemented dressings also showed increased recoverable strain (i.e., increased <em>Q(t)</em>% values) compared with the control. The observed rheological results were supported by scanning electron microscope (SEM) observations, where a more compact and uniform network was observed for supplemented dressings in comparison with the control sample. Addition of pulse flour increased the physical stability of the salad dressing emulsions and also modified color by increasing yellowness and redness hues depending on the type of flour used. This study, thus, demonstrated that pulse flours hold promise as ingredients that could be used in salad dressing formulations.

2015 ◽  
Vol 49 ◽  
pp. 24-34 ◽  
Author(s):  
Mahdi Ghajari Shamooshaki ◽  
Alireza Sadeghi Mahounak ◽  
Mohammad Ghorbani ◽  
Yaya Maghsouldloo ◽  
Aman Mohammad Ziaeifar

The milk along with xanthan at levels 0, 1.9, 3.9, 5.9, 7.9, 9.9 and 0.1 and 0.2 % (No 1 (control) to 11 respectively) as egg replacement were used for preparation of mayonnaise. Creaming index, heat stability, physical stability and rheological properties of samples over a were investigated. Also flow behavior of samples were fitted to Power law, Herschel-Bulkley and Casson models. It was found that addition milk along with xanthan to mayonnaise protected from phase separation in comparison to control sample. All the samples had stability higher than 99% except samples 1, 4, 5 and 6. The highest stability was recorded for sample No 11 (99.98%) and the lowest for 5 (74.95%) that compared with control sample had significant differences (p> 0.05). All the samples except No 1 and 5 showed heat stability higher than 99 % and the highest stability recorded for No 11 ( 99.72%) and the lowest for No 5 (67.42 %) and in comparison with control were significantly different (p> 0.05). Apparent viscosity decreased with increase the egg replacement from 40% to 80%, as the highest and lowest viscosity observed in samples contain 100% and 80% replacement respectively. All samples showed shear-thinning behavior and the high coefficients of determination for Power law and Herschel-Bulkley models (0.99) revealed the adequacy of these rheological models to describe flow behavior of mayonnaise.


Author(s):  
Florina A. SILAGHI ◽  
Alessandro GIUNCHI ◽  
Angelo FABBRI ◽  
Luigi RAGNI

The control of ice cream powder mixture production is carried out evaluating the ice cream liquid phase. The present study was conduced on ice cream and unfrozen liquid phase in order to indirectly evaluate the rheological properties by measuring the powder mixture. The calibration set was formed by samples with different percentage of thickeners, maintaining constant the concentration of the other remaining compounds. After the NIR acquisitions the powders were mixed with warm milk, blended and than settled in order to obtain the unfrozen liquid phase needed for the rheological measurements. For each recipe three batches were prepared. The flow curves were evaluated by using the Ostwald de Waele’s equation and the goodness of fit was evaluated by the R2, which was above 0.95. Predictive models of rheological parameters were set up by means of PLS regressions in order to predict the consistency coefficient (K) and the flow behavior index (n) from spectral acquisitions. High correlation of calibration was found for both parameters and NIR spectra obtaining R2 of 0.884 for K and 0.874 for n. The good prediction of the models encourages applying them to reduce significantly the time of the powder mixing control during production.


2012 ◽  
Vol 430-432 ◽  
pp. 301-305
Author(s):  
Li Wen Tan ◽  
Dong Mei Xu ◽  
Quan Ji ◽  
Bing Bing Wang ◽  
Yan Zhi Xia

Rheological properties of blend spinning solution of sodium alginate and TiO2 nanoparticles (SA/nano-TiO2) were investigated. The rheological parameters, structural viscosity index (Δη) and flow activation energy (Eη) of spinning solutions were calculated. The results reported that the blend spinning solutions were non-newtonian fluids. The apparent viscosity, consistency index (k) and Eη increased with increasing nano-TiO2 content in SA spinning solution, but the degradation degree of apparent viscosity decreased, flow behavior index (n) only slightly decreased and the Δη had no significantly change. The apparent viscosity (ηa) of spinning solutions could be regulated by changing temperature under 50oC. Blend spinning solution had good stability and practical applicability.


Author(s):  
Dixit V. Bhalani ◽  
Arvind Kumar Singh Chandel ◽  
Poonam Singh Thakur

The fermented beverages and foods either of plant or animal source play a vital role in the food of society in several parts of the world. The fermented of foods not only afford vital sources of nutrients but also have abundant potential in maintaining health and also preventing various diseases. The bacteria and yeasts are the major groups of microorganisms related to traditional fermented of the foods. Numerous diverse types of traditional fermented beverages and foods are formed at domestic level in the various countries. The advancement of fermentation technology provides value addition to waste food by their complete conversion into the different value-added products. The recent research suggests that the biological functions of fermented foods affect the health due to functional microbes involved during fermentation which provides several health-promoting benefits to the consumers. The emphasis of this chapter is to describe the fermentation technology and their potential to minimize the wastage of foods by conversion of value-added products and their benefits.


2018 ◽  
Vol 34 (6) ◽  
pp. 887-928 ◽  
Author(s):  
Ajay Sujan ◽  
Raj K. Vyas

Abstract Gas holdup is one of the most important parameters for characterizing the hydrodynamics of bubble columns. Modeling and design of bubble columns require empirical correlations for precise estimation of gas holdup. Empirical correlations available for prediction of gas holdup (εG) in various non-Newtonian systems for both gas-liquid and gas-liquid-solid bubble columns have been presented in this review. Critical analysis of correlations presented by different researchers has been made considering the findings and pitfalls. As the magnitude of gas holdup depends on many factors, such as physicochemical properties of gas and/or liquid, column geometry, type and design of gas distributors, operating conditions, phase properties, and rheological properties, etc., all of these have been discussed and examined. In order to emphasize the significance, relative importance of parameters such as flow behavior index, consistency index, column diameter, gas flow rate, and density of aqueous carboxymethylcellulose (CMC) solution on gas holdup has been quantified using artificial neural network and Garson’s algorithm for an experimental data set of air-CMC solution from the literature. Besides, potential areas for research encompassing operating conditions, column geometry, physical properties, modeling and simulation, rheological properties, flow regime, etc., have been underlined, and the need for developing newer correlations for gas holdup has been outlined. The review may be useful for the modeling and design of bubble columns.


2020 ◽  
Vol 11 (3-4) ◽  
pp. 49-63
Author(s):  
Soumia Zaim ◽  
Omar Cherkaoui ◽  
Halima Rchid ◽  
Rachid Nmila ◽  
Reddad El Moznine

The rheological properties and spectrum infrared of polysaccharides extracted from Cystoseira myriophylloides algae were investigated in the concentrations range from 3 to 9% (w/v) and at different temperatures. Results of rheological characteristics in a steady shear rate showed pseudoplastic properties and the dynamic rheological properties showed a fluid-like viscoelastic behavior. The flow and viscoelastic characteristics of polysaccharides were described using the power-law (the Ostwald model). The values of flow behavior index of the sample were close to unity (0.91) for 3% and it decreased up to 0.71 for 9% revealing the shear-thinning (pseudoplastic) nature of these polysaccharides. Moreover, the consistency coefficient increased non-linearly with concentration and it was described by a power law. The flow behavior as a function of temperature was satisfactorily described using the Arrhenius law and the activation energy values were extracted. It decreased from 15.68 and 17.21 kJ/mol when the concentration increased from 5 to 9% (w/v). Additionally, in dynamic rheological measurements, tan δ > 1 and G″ > G′ reveling a shear-thinning behavior. Finally, the analysis of the FTIR spectra of these polysaccharides showed the presence of uronic acid groups. This behavior would suggest that polysaccharides extracted from Cystoseira myriophylloides could be an interesting additive as thickeners.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1880 ◽  
Author(s):  
Ahmed Gowida ◽  
Salaheldin Elkatatny ◽  
Emad Ramadan ◽  
Abdulazeez Abdulraheem

Calcium chloride brine-based drill-in fluid is commonly used within the reservoir section, as it is specially formulated to maximize drilling experience, and to protect the reservoir from being damaged. Monitoring the drilling fluid rheology including plastic viscosity, P V , apparent viscosity, A V , yield point, Y p , flow behavior index, n , and flow consistency index, k , has great importance in evaluating hole cleaning and optimizing drilling hydraulics. Therefore, it is very crucial for the mud rheology to be checked periodically during drilling, in order to control its persistent change. Such properties are often measured in the field twice a day, and in practice, this takes a long time (2–3 h for taking measurements and cleaning the instruments). However, mud weight, M W , and Marsh funnel viscosity, M F , are periodically measured every 15–20 min. The objective of this study is to develop new models using artificial neural network, ANN, to predict the rheological properties of calcium chloride brine-based mud using M W and M F measurements then extract empirical correlations in a white-box mode to predict these properties based on M W and M F . Field measurements, 515 points, representing actual mud samples, were collected to build the proposed ANN models. The optimized parameters of these models resulted in highly accurate results indicated by a high correlation coefficient, R, between the predicted and measured values, which exceeded 0.97, with an average absolute percentage error, AAPE, that did not exceed 6.1%. Accordingly, the developed models are very useful for monitoring the mud rheology to optimize the drilling operation and avoid many problems such as hole cleaning issues, pipe sticking and loss of circulation.


2003 ◽  
Vol 9 (1) ◽  
pp. 53-63 ◽  
Author(s):  
M. A. Riscardo ◽  
J. M. Franco ◽  
C. Gallegos

This paper deals with the influence that composition of emulsifier blends exerts on the rheological properties of low-in-fat salad dressing-type emulsions. Binary blends of egg yolk and different types of amphiphilic molecules (low-molecular weight and macromolecules) were used in several proportions to stabilize emulsions by keeping constant the total amount of emulsifier. The different emulsifiers added to egg yolk were pea protein, sodium caseinate, polyoxyethylene(20)-sorbitan monolaurate (Tween 20) and sucrose distearate. Steady state flow tests and small-amplitude oscillatory measurements within the linear viscoelasticity region were carried out. Rheological tests were complemented with droplet size distribution measurements and observation of physical stability against creaming of these emulsions. It was pointed out that rheological properties, droplet size and physical stability of the emulsions studied depended on the weight ratio of emulsifiers in the binary blends, although the emulsifier total concentration remained constant, as well as the nature of the substance blended with egg yolk. These results have been explained on the basis of the relationship among rheological properties, droplet size distribution, continuous phase characteristics and interactions among different emulsifier molecules.


Author(s):  
Indrajeet Sahu ◽  
Kalpana Rayaguru ◽  
Rashmi Ranjan Pattnaik ◽  
Sanjaya Kumar Dash

Background: Bael is an important indigenous fruit, which is rich in nutritional and health promoting factors. Development of value-added products from this fruit poses a problem as the fruit has a hard rind and is difficult to be removed by hand. Methods: The objective of this investigation was to evaluate the effect of different conditioning methods as normal water dipping (25-27°C), chilling (10-11°C), freezing (4-5°C) and hot water dipping (90-95°C) on firmness and other mechanical properties of raw and matured bael fruit, with a goal of devising some methods for easy removal of the rind. The fruits after conditioning were subjected to puncture test by universal testing machine. Distinct peaks were observed on the force-displacement traces which indicated the rupture force and firmness of the fruits. The changes observed in rupture force, deformation and firmness in conditioned samples were compared. Result: Rupture force measured for control sample (kept under ambient conditions) was 344.4±27.13 N and was found to be lower than that of the conditioned samples. The minimum rupture force of 192.6±14.41 N was observed in frozen sample. No significant difference in rupture force could be observed between the normal water dipped sample and chilled samples. Hot water dipped sample required a rupture force of 215.3±29.2 N, which was not significantly (p greater than 0.05) less than those of other treatments but, the green color of the fruits degraded to brown. The change in other mechanical properties also remained similar. The results would be useful for preparing the raw bael fruit for further processing and value addition.


2018 ◽  
Vol 21 (0) ◽  
Author(s):  
Phisut Naknaen ◽  
Nuttanapat Chinnapitiwong ◽  
Peimika Kruayoo

Abstract Gac aril (GA) contains a very high level of lycopene, giving it exceptional antioxidant properties. Based on the superior properties of GA, the aim of this work was to fortify salad dressings with the lycopene from GA and monitor their stability during storage. The salad dressings were produced by incorporating different amounts of GA (0% to 20%, g/100 g) in the formulations. An increase in GA content caused a marked increase in the soluble fibre, lycopene and total phenolic contents while the fat content and the caloric value decreased. The firmness and viscosity also decreased with increasing GA content. The sensory evaluation revealed that the GA could be added to salad dressings up to a level of 20% and still be accepted by the consumer. It was verified the GA antioxidant effect in the salad dressing compared to that in the sample without GA, as evidenced by the peroxide value (POV), thiobarbituric acid-reactive substances (TBARS), p-anisidine value (p-AV) and total oxidation value (Totox V). The protective effects were approximately 1.75, 2.58, 5.14 and 7.58 times higher than those in the control sample for the samples containing 5%, 10%, 15% and 20% GA, respectively. It was concluded that GA could be used as an alternative source of lycopene, polyphenol compounds and dietary fibre, to enrich salad dressings. This work could be used as a guideline for industry to develop high value-added salad dressings.


Sign in / Sign up

Export Citation Format

Share Document