scholarly journals Using the Mitschka-Briggs-Steffe Method for Evaluation of Cactus Pear Concentrated Pulps Rheological Behavior

Author(s):  
Pedro Esteves Duarte Augusto ◽  
Marcelo Cristianini ◽  
Albert Ibarz

The rheological characterization of food is important for efficient product and process design. Although its importance in semi-arid regions, there are only a few studies regarding the rheological properties of cactus pear products in the literature. The present work has used the Mitschka-Briggs-Steffe method for evaluation of the rheological behavior of cactus pear concentrated pulps. The pulps have shown pseudoplastic behavior. The flow behavior index (n) shows a constant value in the evaluated conditions, and its average value was considered in the evaluated temperature and concentration range. The consistency index (k) has shown dependency of concentration and temperature, being well modeled by a modified Arrhenius equation. Thus, the rheological parameters of cactus pear concentrated pulps can be obtained using a single equation, related with temperature, concentration and shear rate. The obtained data are potentially useful for future studies on product development, food properties and process design.

Author(s):  
Jana Andertova´ ◽  
Frantisˇek Rieger

The rheological behavior of ceramic suspensions affects significantly wet ceramic processing. On the base of knowledge of rheological parameters the technological parameters of various processes (mixing, batching, spray drying, slip casting, of rheological parameters the selection of proper geometry and sensors must be done. From the data measured the flow curves must be designed and parameters of appropriate rheological models must be calculated. The power-law is the simplest model mostly used for description of rheological behavior of non-Newtonian fluids. Using this model, the dependence of shear stress on shear rate can be expressed. The aim of this paper is to show how the flow curves necessary for parameters of rheological model evaluation can be obtained from primary experimental data received from measurements on rotational viscometer. The two arrangements of rotational viscometer method were used in rheological measurements. The procedure of experimental data to obtain parameters K (coefficient of consistency) and n (flow behavior index) is presented.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Muhammad Aslam ◽  
Faiz Ahmad ◽  
Puteri Sri Melor Binti Megat Yusoff ◽  
Khurram Altaf ◽  
Mohd Afian Omar ◽  
...  

The purpose of this research is to investigate the influence of different powder loadings of 316L stainless steel (SS) powders on rheological behavior of feedstocks required for low pressure powder injection molding (L-PIM) process. The main idea consists in development of various formulations by varying 316L SS powder contents in feedstocks and evaluating the temperature sensitivity of feedstock via flow behavior index and activation energy. For this purpose, the irregular shape, spherical shape, and combination of both shapes and sizes (bimodal approach) of 316L SS powders are compounded with wax based composite binder. Moreover, the influence of elemental nanosized boron (nB) addition (up to 1.5 wt.%) on rheological properties of irregular shape 316L SS powders is also evaluated using capillary rheometer method. It is observed that rheological parameters for solid powder loading of powder gas atomized (PGA) and bimodal powder P25/75 316L SS underwent sudden change from PGA-69 vol.% to PGA-72 vol.% and P25/75-67 vol.% to P25/75 316L SS 70 vol.%, respectively. Thus it is concluded that PGA-69 vol.% and P25/75-67 vol.% are optimal powder solid loadings corresponding to the lowest values of activation energies.


Author(s):  
Eliza Guadalupe Arcos-Estrada ◽  
Mayra Díaz-Ramírez ◽  
Judith Jiménez-Guzmán ◽  
Erika Berenice León-Espinosa ◽  
Mariano García-Garibay ◽  
...  

Objective: Analyze the effect of grasshopper (Sphenarium purpurascens Charpentier) paste addition on the rheological behavior of Mole Poblano (MP) and its relation with the technological properties of the grasshopper paste. Design/methodology/approach: The addition of grasshopper paste was done at different proportions as follows: T0= 0% of grasshopper paste (GP) and 100% of mole Poblano (MP); T10=10% GP and 90% MP; T15=15% GP and 85% MP, T20=20% GP and 80% MP, T25=25% GP and 75 % MP, T30=30% GP and 70% MP. Water retention and emulsifying capacity of grasshopper paste were evaluated. Density, kinematic and apparent viscosity, and rheological behavior were analyzed at 25ºC; rheological parameters (consistency index (k) and flow behavior index (n)) were calculated by performing a regression analysis to adjust the graphs to a power-law model. Findings/conclusion: Grasshopper paste had higher emulsifying capability than water retention capability.  Apparent viscosity of all formulations decreased as shear rate increased, so all mixtures of GP and MP demonstrated No-Newtonian behavior and pseudoplastic performance. Index consistency increased as GP content increased, these results are related with protein content because GP had a good emulsifying capability. Limitations on study/implications: More studies about the characterization of the proteins of GP and their interaction with other components are required.


2020 ◽  
Vol 16 (5) ◽  
pp. 666-674
Author(s):  
Amir M. Mortazavian ◽  
Najme Kheynoor ◽  
Zahra Pilevar ◽  
Zhaleh Sheidaei ◽  
Samira Beikzadeh ◽  
...  

The rheological analysis is important analytical tools used to obtain fundamental information about food structure. For instance, the properties of flow of liquid and semi-solidity are characterized by the consistency and flow behavior experiments as two important rheological parameters. The rheological parameters of foods are applied in quality control of the products and processing of food products such as energy input calculations, process design, equipment selection, and especially for deciding on heat exchangers and pumps. Steady flow behavior, oscillatory, and penetration tests are among commonly used parameters for evaluating rheological characteristics of ice cream. The purpose of this paper is to provide an overview of recent experiments and methods for measuring the rheological and texture properties of ice cream.


Author(s):  
Florina A. SILAGHI ◽  
Alessandro GIUNCHI ◽  
Angelo FABBRI ◽  
Luigi RAGNI

The control of ice cream powder mixture production is carried out evaluating the ice cream liquid phase. The present study was conduced on ice cream and unfrozen liquid phase in order to indirectly evaluate the rheological properties by measuring the powder mixture. The calibration set was formed by samples with different percentage of thickeners, maintaining constant the concentration of the other remaining compounds. After the NIR acquisitions the powders were mixed with warm milk, blended and than settled in order to obtain the unfrozen liquid phase needed for the rheological measurements. For each recipe three batches were prepared. The flow curves were evaluated by using the Ostwald de Waele’s equation and the goodness of fit was evaluated by the R2, which was above 0.95. Predictive models of rheological parameters were set up by means of PLS regressions in order to predict the consistency coefficient (K) and the flow behavior index (n) from spectral acquisitions. High correlation of calibration was found for both parameters and NIR spectra obtaining R2 of 0.884 for K and 0.874 for n. The good prediction of the models encourages applying them to reduce significantly the time of the powder mixing control during production.


Author(s):  
Dayane Izidoro ◽  
Maria-Rita Sierakowski ◽  
Nina Waszczynskyj ◽  
Charles W. I. Haminiuk ◽  
Agnes de Paula Scheer

The effects of ingredients on the sensory evaluation and rheological behavior of two brands of mayonnaise were examined in this work. Mayonnaise samples were examined by Analytical Descriptive Test and Ranking Test of Preference. The rheological parameters were determined at 25°C using a concentric cylinder Brookfield rheometer with a spindle SC4-34. The results showed that standard mayonnaise as opposed to low-fat mayonnaise gained higher grades for most sensory attributes. All samples were found to exhibit non-Newtonian pseudoplastic behavior described by Herschel–Bulkley model. A decrease in the yield stress, viscosity and shear stress with the decrease in oil content was observed in all products, which confirm that the rheological characterization is capable of distinguishing rather well between mayonnaises made with different formulation.


2008 ◽  
Vol 18 (3) ◽  
pp. 34482-1-34482-11 ◽  
Author(s):  
Vassilios C. Kelessidis ◽  
Roberto Maglione

AbstractA methodology is presented to invert the flow equation of a Herschel-Bulkley fluid in Couette concentric cylinder geometry, thus enabling simultaneous computation of the true shear rates, γ̇HB, and of the three Herschel-Bulkley rheological parameters. The errors made when these rheological parameters are computed using Newtonian shear rates, γ̇N, as it is normal practice by research and industry personnel, can then be estimated. Quantification of these errors has been performed using narrow gap viscometer data from literature, with most of them taken with oil-field rheometers. The results indicate that significant differences exist between the yield stress and the flow behavior index computed using γ̇HB versus the parameters obtained using γ̇N and this is an outcome of the higher γ̇HB values. Predicted true shear rates and rheological parameters are in very good agreement with results reported by other investigators, who have followed different approaches to invert the flow equation, both for yield-pseudoplastic and power-law fluids.


Author(s):  
ROSANE DA SILVA RODRIGUES ◽  
ÂNGELA MARIA GOZZO ◽  
ROBERTO HERMÍNIO MORETTI

Estudou-se o comportamento reológico de extratos elaborados com grãos, farinha integral e isolado protéico de soja. Extratos com 3% de proteína foram obtidos de grãos de soja (em equipamento conhecido como “vaca mecânica”), de farinha integral e de isolado protéico (por dissolução em água) e pasteurizados a 74±2°C por 15 seg. Os parâmetros reológicos estudados foram o coeficiente de consistência, o índice de comportamento do fluxo e a viscosidade aparente. Foram determinados, também, sólidos totais, proteínas, lipídios, cinzas, fibra bruta, carboidratos e índice de sedimentação (AOAC, 1995). Verificou-se que a viscosidade aparente, a 4 e 25°C, do extrato obtido de grãos de soja (fluido nãonewtoniano com comportamento pseudoplástico) foi maior que a do extrato da farinha (fluido não-newtoniano com comportamento pseudoplástico a 4°C e dilatante a 25°C) e do isolado (fluido newtoniano). O maior índice de sedimentação constatado no extrato de farinha integral e o baixo teor de sólidos solúveis no isolado protéico foram determinantes, entre outros fatores, no comportamento reológico verificado. AbstractRHEOLOGICAL BEHAVIOR OF SOYMILK, WHOLE SOY FLOUR AND SOY ISOLATED PROTEIN The rheological properties of extracts elaborated with soybeans, whole soy flour and isolated protein were studied. Extracts with 3% of protein were obtained from soybeans (in a equipment called “mechanic cow”), whole soy flour and isolated soy protein (by dissolution in water) and pasteurized at 74±2°C for 15 seg. The rheological parameters studied were the flow behavior index, consistency coefficient and apparent viscosity. Total solid, proteins, lipids, ashes, brute fiber, carbohydrates and sedimentation index (AOAC, 1995) was also determined. The apparent viscosity, at 4 and 25°C, of the extract obtained from soybeans (non-newtonian fluid with pseudoplastic behavior), was greater than the one of whole soy flour extract (nonnewtonian fluid with pseudoplastic behavior at 4°C and dilatant at 25°C) and of the isolated soy protein extract (Newtonian fluid). The highest sedimentation index verified in the whole soy flour extract and the low content of soluble solids in the extract of isolated soy protein defined, among others factors, the rheological behavior verified.


1989 ◽  
Vol 111 (3) ◽  
pp. 337-341 ◽  
Author(s):  
K. G. A. Porges ◽  
S. A. Cox ◽  
C. Herzenberg ◽  
C. Kampschoer

Pulsed Neutron Activation (PNA) is a means of noninvasive flow velocity measurement based on tagging the flowing medium with a short-lived radioactivity. Previous work with salt or dye-tagging showed poor accuracy in turbulent and failed in laminar flow when conventional data processing was used. However, use of a data acquisition and processing scheme that is based on tag dispersion modelling can produce absolute values over a wide range of flow speeds and regimes with high accuracy. For non-Newtonian/laminar flow, rheological information can also be obtained. The inherently non-intrusive nature of PNA tagging makes this scheme available for slurry measurements. The performance of PNA in slurry flow at up to 60 percent solid content was compared to full-flow diversion and weighing. Errors ranged from less than 0.2 percent at high Reynolds’ numbers to about 2 percent for paste flow. Rheological parameters (yield shear stress or flow behavior index) could be determined with an accuracy that compared to that of a spindle viscometer with grab-samples. The PNA scheme thus offers a unique means of studying slurry flow in a dedicated laboratory facility, or of providing calibration for other flowmeters in an industrial plant through temporary installation by a team of expert consultants.


2012 ◽  
Vol 430-432 ◽  
pp. 301-305
Author(s):  
Li Wen Tan ◽  
Dong Mei Xu ◽  
Quan Ji ◽  
Bing Bing Wang ◽  
Yan Zhi Xia

Rheological properties of blend spinning solution of sodium alginate and TiO2 nanoparticles (SA/nano-TiO2) were investigated. The rheological parameters, structural viscosity index (Δη) and flow activation energy (Eη) of spinning solutions were calculated. The results reported that the blend spinning solutions were non-newtonian fluids. The apparent viscosity, consistency index (k) and Eη increased with increasing nano-TiO2 content in SA spinning solution, but the degradation degree of apparent viscosity decreased, flow behavior index (n) only slightly decreased and the Δη had no significantly change. The apparent viscosity (ηa) of spinning solutions could be regulated by changing temperature under 50oC. Blend spinning solution had good stability and practical applicability.


Sign in / Sign up

Export Citation Format

Share Document