scholarly journals Plants that can be Poisonous for Cows. A Review

Author(s):  
Cristina EL MAHDY ◽  
Silvana POPESCU ◽  
Cristin BORDA

Romania is blessed with a rich spontaneous flora, but some of the plants are toxic by their consumption in cattle, affecting the health, productions and endangering consumer safety. Sometimes even the consumption of small amounts causes poisoning with a broad extension: from mild, moderate to severe and with chronic or acute manifestations. Plant action is not similar. Taxus Buccata, Eupatorium spp. (E. rugosum, E. urticaefolium, E. ogeratoides) are cardiotoxic plants, but, Eupatorium spp. also acts through depression of the central nervous system; Datura stramonium (Jimson weed), Solanum spp. (nightshades), Atropa belladonna (belladonna), are plants with cholinergic blocking; haemolytic anemia is caused by Pteridium aquilinum (Bracken fern) and Equisetum (horsetail). The poisoning with cyanogenic principles occurs at Sorghum spp (Johnson grass, sudan grass); Elderberry consumption, Senecio spp. and Hypericum (St John’s wort) induces liver toxicity. Plants containing alkaloids outside their toxicity also have teratogenic action: Lupinus spp., Nicotiana spp, Conium maculatum, Veratrum album. However, some of these plants can be used in certain cows’ treatments.

2020 ◽  
Vol 71 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Katarina Černe

AbstractCannabis sativa L. contains more than 100 phytocannabinoids that can interact with cannabinoid receptors CB1 and CB2. None of the cannabinoid receptor ligands is entirely CB1- or CB2-specific. The effects of cannabinoids therefore differ not just because of different potency at cannabinoid receptors but also because they can interact with other non-CB1 and non-CB2 targets, such as TRPV1, GPR55, and GPR119. The most studied phytocannabinoid is Δ9-tetrahydrocannabinol (THC). THC is a partial agonist at both cannabinoid receptors, but its psychotomimetic effect is produced primarily via activation of the CB1 receptor, which is strongly expressed in the central nervous system, with the noteworthy exception of the brain stem. Although acute cognitive and other effects of THC are well known, the risk of irreversible neuropsychological effects of THC needs further research to elucidate the association. Unlike THC, phytocannabinoid cannabidiol (CBD) does not appear to have psychotomimetic effects but may interact with some of the effects of THC if taken concomitantly. CBD administered orally has recently undergone well-controlled clinical trials to assess its safety in the treatment of paediatric epilepsy syndromes. Their findings point to increased transaminase levels as a safety issue that calls for postmarketing surveillance for liver toxicity. The aim of this review is to summarise what is known about acute and chronic toxicological effects of both compounds and address the gaps in knowledge about the safety of exogenous cannabinoids that are still open.


2021 ◽  
Vol 319 ◽  
pp. 01059
Author(s):  
Latifa Didou ◽  
Fatima-Zahra Azzaoui ◽  
Ahmed omar touhami Ahami ◽  
Soumia Ed-Day ◽  
Fatima Ezzahra Kacimi ◽  
...  

The alkaloid extract of datura stramonium (rich of atropine, hyoscyamine, scopolamine) is used to evaluate its effect on the central nervous system in rats (locomotion, anxiety). The animals received the alkaloid extract of datura by intraperitoneal injection. However, after the injection a group of rats got an inhibitory treatment contain flavonoids extracted from Rosmarinus officinalis. At the dose of 50 mg/kg/body weight of the alkaloid extract, the female rats have shown a reduction of locomotor activity and an induction of an anxiogenic effect. In the other hand, the mixture of Datura stramonium and Rosmarinus officinalis showed a neuroprotective action with regard to the disorders induced by extracts of Datura stramonium.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Diyao Wu ◽  
Tielong Xu ◽  
Zhendong Huang ◽  
Yaling Wang ◽  
Hongfu Chen ◽  
...  

Aim. Based on the bibliometric method, the toxicity of aconite is analyzed and evaluated. Methods. Studies on the toxicity of aconite were retrieved from CNKI, CQVIP, Chinese Biomedical Literature Service System, and PubMed, ranging from January 1985 to November 2020. All those studies were formed into the Database of Literature of Toxicity of Aconite (DLTA). Studies on the toxicity of aconite were retrieved from CNKI, CQVIP, SinoMed, and PubMed, respectively. Collecting relevant information in DLTA, we analyzed the hotspots, factors and mechanism of aconite toxicity, and attenuation methods. Results. A total of 445 studies on the toxicity of aconite have been collected. “Compatibility attenuation” and “Processing attenuation” have been the hotspots of aconite toxicity in recent years. Many studies support that the main toxic reactions of aconite are heart damage, liver toxicity, nephrotoxicity, and neurotoxicity. The toxic effect of aconite is related to the effect on the central nervous system. Exciting the vagus nerve reduces the autonomy of the sinus node and damages myocardial cells. The decoction time, dosage, and administration of aconite are the main factors of the toxicity of aconite. There are few studies about the effect of the origin of aconite and the specifications of the medicinal materials on toxicity. Therefore, it is impossible to analyze its relevance. At present, the commonly used methods to reduce the toxicity of aconite mainly include three methods: drug compatibility, processing, and decoction. The most common compatibility with aconite medicines includes licorice, dried ginger, ginseng, and ephedra. Black sliced aconite, steamed slices, and fried slices are less toxic than other processed products. Aconite decoction for more than 60 minutes can basically reach the safe range, and more than 2 hours of decoction may cause the loss of active ingredients. Conclusions. The research on the mechanisms of aconite dosage-efficacy-toxicity, compatibility, processing, liver toxicity, and nephrotoxicity is still not comprehensive and in-depth. Researchers should perfect toxicity studies of aconite, remove the constraints that affect its clinical application, and promote the clinical use of aconite safely and reasonably.


2019 ◽  
Vol 13 (1) ◽  
pp. 107-115
Author(s):  
Angesom H. Desta

Background: Plants are the major source of feed and have vital nutritious importance to animals; however, they also comprise a large variety of poisons known. Objective: A study was conducted to identify potential poisonous plants to domestic animals and its veterinary importance in selected districts of Afar region, Northeast Ethiopia. Methodology: Questionnaire survey and key informants interview were done with a total of 245 respondents and plant samples were taken for identification. Results: A total of 21 plants were identified and documented to have a poisonous effect on livestock. The poisonous plants frequently complained by the respondents were Capparis tomentosa, Prosopis juliflora, Parthenium hysterophorus, Lantana camara, Acacia absynica, Sorghum bicolar, Datura stramonium, Plantago lanceolata, Pteridium aquilinum and Solanum incanum. The majorly described predisposing factors for the occurrence of plant poisoning were feed shortage, nutritional deficiency and excessive consumption. The common poisoning seasons indicated were at the end of rainy season and during drought time. The plant parts that caused poisoning were leaves of plants. This study also revealed that bloating and other GIT disturbances, salivation, bloody urine and in appetance were among the frequently manifested signs in poisoned livestock. Moreover, this study showed that caprine and ovine followed by camels and bovine were the most frequently poisoned animals. Conclusion: Phytopoisoning is commonly occurring and challenging health of livestock in the study area. Hence, proper range management should be practiced to decrease the danger of plant poisoning to animals and all concerned bodies should collaborate on pasture and water development programs to minimize the risk of enforced consumption of livestock on poisonous plants due to feed shortage.


Author(s):  
D. M. DePace

The majority of blood vessels in the superior cervical ganglion possess a continuous endothelium with tight junctions. These same features have been associated with the blood brain barrier of the central nervous system and peripheral nerves. These vessels may perform a barrier function between the capillary circulation and the superior cervical ganglion. The permeability of the blood vessels in the superior cervical ganglion of the rat was tested by intravenous injection of horseradish peroxidase (HRP). Three experimental groups of four animals each were given intravenous HRP (Sigma Type II) in a dosage of.08 to.15 mg/gm body weight in.5 ml of.85% saline. The animals were sacrificed at five, ten or 15 minutes following administration of the tracer. Superior cervical ganglia were quickly removed and fixed by immersion in 2.5% glutaraldehyde in Sorenson's.1M phosphate buffer, pH 7.4. Three control animals received,5ml of saline without HRP. These were sacrificed on the same time schedule. Tissues from experimental and control animals were reacted for peroxidase activity and then processed for routine transmission electron microscopy.


Author(s):  
Gladys Harrison

With the advent of the space age and the need to determine the requirements for a space cabin atmosphere, oxygen effects came into increased importance, even though these effects have been the subject of continuous research for many years. In fact, Priestly initiated oxygen research when in 1775 he published his results of isolating oxygen and described the effects of breathing it on himself and two mice, the only creatures to have had the “privilege” of breathing this “pure air”.Early studies had demonstrated the central nervous system effects at pressures above one atmosphere. Light microscopy revealed extensive damage to the lungs at one atmosphere. These changes which included perivascular and peribronchial edema, focal hemorrhage, rupture of the alveolar septa, and widespread edema, resulted in death of the animal in less than one week. The severity of the symptoms differed between species and was age dependent, with young animals being more resistant.


Author(s):  
Hannah R. Brown ◽  
Tammy L. Donato ◽  
Halldor Thormar

Measles virus specific immunoglobulin G (IgG) has been found in the brains of patients with subacute sclerosing panencephalitis (SSPE), a slowly progressing disease of the central nervous system (CNS) in children. IgG/albumin ratios indicate that the antibodies are synthesized within the CNS. Using the ferret as an animal model to study the disease, we have been attempting to localize the Ig's in the brains of animals inoculated with a cell associated strain of SSPE. In an earlier report, preliminary results using Protein A conjugated to horseradish peroxidase (PrAPx) (Dynatech Diagnostics Inc., South Windham, ME.) to detect antibodies revealed the presence of immunoglobulin mainly in antibody-producing plasma cells in inflammatory lesions and not in infected brain cells.In the present experiment we studied the brain of an SSPE ferret with neutralizing antibody titers of 1:1024 in serum and 1:512 in CSF at time of sacrifice 7 months after i.c. inoculation with SSPE measles virus-infected cells. The animal was perfused with saline and portions of the brain and spinal cord were immersed in periodate-lysine-paraformaldehyde (P-L-P) fixative. The ferret was not perfused with fixative because parts of the brain were used for virus isolation.


Author(s):  
John L.Beggs ◽  
John D. Waggener ◽  
Wanda Miller ◽  
Jane Watkins

Studies using mesenteric and ear chamber preparations have shown that interendothelial junctions provide the route for neutrophil emigration during inflammation. The term emigration refers to the passage of white blood cells across the endothelium from the vascular lumen. Although the precise pathway of transendo- thelial emigration in the central nervous system (CNS) has not been resolved, the presence of different physiological and morphological (tight junctions) properties of CNS endothelium may dictate alternate emigration pathways.To study neutrophil emigration in the CNS, we induced meningitis in guinea pigs by intracisternal injection of E. coli bacteria.In this model, leptomeningeal inflammation is well developed by 3 hr. After 3 1/2 hr, animals were sacrificed by arterial perfusion with 3% phosphate buffered glutaraldehyde. Tissues from brain and spinal cord were post-fixed in 1% osmium tetroxide, dehydrated in alcohols and propylene oxide, and embedded in Epon. Thin serial sections were cut with diamond knives and examined in a Philips 300 electron microscope.


Sign in / Sign up

Export Citation Format

Share Document