scholarly journals Selection of diazotrophic bacteria isolated from wastewater treatment plant sludge at a poultry slaughterhouse for their effect on maize plants

Revista CERES ◽  
2018 ◽  
Vol 65 (1) ◽  
pp. 85-92
Author(s):  
Jorge Avelino Rodriguez Lozada ◽  
Klever Cristiano Silveira ◽  
Libério Junio da Silva ◽  
Marihus Altoé Baldotto ◽  
Lílian Estrela Borges Baldotto

ABSTRACT The economic and environmental costs of nitrogen fertilization have intensified the search for technologies that reduce mineral fertilization, for example atmospheric nitrogen-fixing (diazotrophic) bacteria inoculation. In this context, the present study addressed the isolation and quantification of diazotrophic bacteria in the sludge from treated wastewater of a poultry slaughterhouse; a description of the bacteria, based on cell and colony morphology; and an assessment of growth and N content of maize plants in response to inoculation. Sixteen morphotypes of bacteria were isolated in six N-free culture media (JMV, JMVL, NFb, JNFb, LGI, and LGI-P). The bacteria stained gram-positive, with 10 rod- and six coccoid-shaped isolates. To evaluate the potential of bacteria to promote plant growth, maize seeds were inoculated. The experiment consisted of 17 treatments (control plus 16 bacterial isolates) and was carried out in a completely randomized design with six replicates. The experimental units consisted of one pot containing two maize plants in a greenhouse. Forty-five days after planting, the variables plant height, leaf number, stem diameter, root and shoot fresh and dry weight, and N content were measured. The highest values were obtained with isolate UFV L-162, which produced 0.68 g total dry matter per plant and increased N content to 22.14 mg/plant, representing increments of 74 and 133%, respectively, compared with the control. Diazotrophs inhabit sludge from treated wastewater of poultry slaughterhouses and can potentially be used to stimulate plant development and enrich inoculants.

2019 ◽  
Vol 11 (7) ◽  
pp. 170
Author(s):  
Roberto Cecatto Júnior ◽  
Vandeir Francisco Guimarães ◽  
Lucas Guilherme Bulegon ◽  
Anderson Daniel Suss ◽  
Adriano Mitio Inigaki ◽  
...  

The aim was to evaluate the initial development of maize plants when submitted to mineral fertilization with magnesium sources in the presence or absence of seed inoculation with Azospirillum brasilense. To do so, was conducted an experiment in greenhouse. In the essay was adopted a randomized blocks design, in a factorial scheme 3 × 2, represented by the magnesium sources: magnesium sulfate (MgSO4), magnesium oxide (MgO) and control without Mg fertilization, in the presence or absence of inoculation with A. brasilense. The Mg sources were supplied with a dose of 30 kg ha-1, being homogenized in the substrate before sowing the crop. The analysis were carried out in the V4 stage, evaluating: basal stem diameter (BSD); relative chlorophyll content (SPAD index), leaf dry mass (LDM), stem + sheath blade dry mass (SSDM) and root dry mass (RDM). No differences were observed for the factors interaction and for the Mg sources. When considered the seed inoculation there was increases of 7.1%; 6.61%; 19.23%; 28.32%; and 15.17 %, for basal stem diameter, SPAD index, leaf dry mass, stem + sheath blade dry mass and roots, respectively. The inoculation of maize seeds with A. brasilense increases the initial development of maize plants and the SPAD index in greenhouse conditions in the V4, while the fertilization with the magnesium sources do not interfere in the maize development.


2003 ◽  
Vol 3 (4) ◽  
pp. 223-229 ◽  
Author(s):  
C.D. Tsadilas ◽  
P.S. Vakalis

The effect of irrigation with treated municipal wastewater on the agricultural income from cotton and corn crops was studied by a three-year field experiment (1995-1997), carried out within the wastewater treatment plant (WWTP) of the city of Larissa, central Greece. The experimental design for both crops was randomised complete blocks with five treatments (M- control-irrigation with fresh water, W-irrigation with wastewater and no mineral fertilization, MF- irrigation with fresh water and complete mineral fertilization, WSF- irrigation with wastewater and reduced mineral fertilization, WTF- irrigation with wastewater and complete mineral fertilization). Each treatment was replicated four times. The agricultural income was assessed using the yield of the crops and the economic data of the area. The results showed that in the case of corn, the treatment WTF gave the highest agricultural income. The treatments W and WSF gave higher agricultural income compared to the control but was not significantly different compared to the treatment MF. In the case of cotton, all the treatments included wastewater use, increased significantly the agricultural income in comparison to the control, but at similar level as the treatment MF did. From the data of this study, it is concluded that treated wastewater can be used for irrigation of corn and cotton, saving fresh water and mineral fertilizers and obtaining the same or better economic results.


1983 ◽  
Vol 29 (8) ◽  
pp. 888-894 ◽  
Author(s):  
Nabil A. Hegazi ◽  
Mohamed Monib ◽  
Hussein A. Amer ◽  
El-Sayed Shokr

A pot experiment was designed to investigate the effects of inoculation with Azospirillum and (or) straw amendment on growth of plants grown in Giza soils. Inoculation caused increases in plant dry weight (200%) and total N content (157%) of plants. These characters were correlated with increases in ATP production in rhizosphere (492%), nitrogenase activity (438%), and densities of Azospirillum sp. (116-fold). Addition of straw only (5%, w/w) to the soil stimulated rhizosphere microorganisms (ATP, 410%), N2 fixation (nitrogenase activity, 392%), and also plant growth (plant dry weight, 176%; total N content, 149%). Simultaneous Azospirillum inoculation and straw amendment exerted the most favourable conditions for N2 fixation on roots (nitrogenase activity, 554% increase over control) leading to the greatest biological (numbers of azospirilla, 156-fold; ATP, 543%; nitrogenase activity 554%), as well as agronomic (total dry weight, 343%; total N content, 196%; leaf surface, 478%) effects. Under farming conditions of Egypt, field-grown plants benefitted from inoculation with Azospirillum sp. Increases up to 150–170%, 180–270%, and 120–130% were reported for straw yield, grain yield, and total N, respectively. Three cultivars responded differently to inoculation, and application of 200 kg N Ha−1 significantly reduced nitrogenase activity.


2005 ◽  
Vol 62 (4) ◽  
pp. 381-388 ◽  
Author(s):  
Katarzyna Wójcik Oliveira ◽  
Wanderley José de Melo ◽  
Gener Tadeu Pereira ◽  
Valéria Peruca de Melo ◽  
Gabriel Maurício Peruca de Melo

Biosolids comprise organic matter and plant nutrients, but are also a source of heavy metals hazardous to soils, plants and humans. The aim of this work was to evaluate accumulation, movement in the soil profile and availability to maize plants of heavy metals in two oxisols amended with biosolids for five years. The experiment was carried out in Jaboticabal, SP, Brazil, under field conditions, using a split-plot design. Biosolids were added to the soils at four different rates, 0.0 (control with mineral fertilization), 2.5; 5.0 and 10.0 t ha-1, dry weight basis, annualy for three years. In the fourth and fifth years, the 2.5 t ha-1 treatment rate was increased to 20.0 t ha-1. In the fifth year, soil samples were collected at 0-20 and 20-40 cm depths and analyzed for Cu, Ni, Mn, Pb and Zn total and extractable (Mehlich 1) contents. Biosolids increased the concentration of Ni and Zn in the Typic Eutrorthox, and of Ni, Pb, Zn and Cu in the Typic Haplorthox, but values did not exceed critical limits established by legislation. The elements generally accumulated in the 0-20 cm depth. Lead and Ni concentrations in grains were below detection limits. In general, heavy metals contents in maize plants were not affected by application of biosolids. Mehlich 1 extractant was not efficient in predicting the availability of Ni, Mn, and Pb to maize plants.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 506d-506
Author(s):  
Robert R. Tripepi ◽  
Holly J. Schwager ◽  
Mary W. George ◽  
Joseph P. McCaffrey

Two insecticides, acephate or azadirachtin, were added to tissue culture media to determine their effectiveness in controlling onion thrips (Thrips tabaci Lindeman.) and to determine if these insecticides could damage the plant shoot cultures. To test for insecticide phytotoxicity, microshoots from European birch (Betula pendula), American elm (Ulmus americana), `Pink Arola' chrysanthemum (Dendranthema grandiflora), `America' rhododendron (Rhododendron catawbiense), `Golden Emblem' rose (Rosa hybrida), and `Gala' apple (Malus domestica) were placed in 130-ml baby food jars containing 25 ml of medium supplemented with 6.5, 13, or 26 mg/l Orthene® (contained acephate) or 0.55, 1.1, or 2.2 ml/l Azatin® (contained azadirachtin). Control jars lacked insecticide. To test for thrips control, 13 mg/l Orthene® or 0.55 ml/l Azatin® was added to Murashige and Skoog medium, and 10 thrips were placed on `Gala' apple microshoots in each jar. Jars were sealed with plastic wrap. In both studies, microshoot dry weight and heights were determined. In the second study, the total number of thrips per jar was also determined 3 weeks after inoculation. Microshoots on Orthene®-treated media lacked phytotoxicity symptoms, regardless of the concentration used. In contrast, Azatin® hindered plant growth, decreasing shoot height or dry weight by up to 85% depending on the species. Both insecticides prevented thrips populations from increasing, since less than 10 thrips were found in jars with insecticide-treated medium. Control jars, however, contained an average of almost 70 thrips per jar. This study demonstrated that both Orthene® and Azatin® were effective for eradicating thrips from plant tissue cultures, but Orthene® should probably be used because Azatin® was phytotoxic to all species tested.


2017 ◽  
Vol 1 (1) ◽  
pp. 46-55 ◽  
Author(s):  
Athar Hussain ◽  
Manjeeta Priyadarshi ◽  
Saif Said ◽  
Suraj Negi

Most of the industrial sewage effluents used for irrigation contains heavy metals which cause toxicity to crop plants as the soils are able to accumulate heavy metal for many years. The vegetables grown for the present study were irrigated with treated wastewater brought from a nearby full-scale sewage treatment plant at different compositions along with tap water as a control. The concentration levels of the Cd, Co, Cu, Mn and Zn in the soil were found to below the toxic limits as prescribed in literature. Daily Intake Metals (DIM) values suggest that the consumption of plants grown in treated wastewater and tap water is nearly free of risks, as the dietary intake limits of Cu, Fe, Zn and Mn. The Enrichment Factor for the treated wastewater irrigated soil was found in order Zn> Ni> Pb> Cr> Cu> Co> Mn> Cd. Thus, treated wastewater can be effectively used for irrigation. This will have twofold significant environmental advantages: (1) helpful to reduce the groundwater usage for irrigation and (2) helpful to reduce the stress on surface water resources.


1994 ◽  
Vol 29 (12) ◽  
pp. 255-266 ◽  
Author(s):  
T. Gschlößl

UV-irradiation as an effective method of diminishing germs in the outlet of wastewater treatment plants was studied in a half-scale pilot-project sponsored by the State of Bavaria/BRD for a period of 3 years. Technical, physical and biological parameters capable of influencing this process were examined. The possibility to improve the hygienic and also the ecological structure of receiving waters was put to discussion. Possible effects of formed bypproducts upon the water biocoenosis of rivers were pointed out. The results demonstrated that UV-irradiation can diminish the number of germs in the outlet of a treatment plant to an extent which is sufficient to guarantee the maintenance of the bacteriological and presumably also the virological values set by the EC Bathing Water Directive. Nevertheless the UV-treatment process requires further technological development and research work concerning i.e. the improvement of hydraulic conditions, coat-forming on the quartz sleeves of the lamps, photochemical forming of by-products, after-growth and effects upon the localised benthic flora and fauna of the receiving water. It has to be stressed that a significant improvement of the bacteriological structure of flowing waters is only attainable, if the influx from non-point sources can be reduced simultaneously.


1995 ◽  
Vol 31 (7) ◽  
pp. 201-212 ◽  
Author(s):  
H. Løkkegaard Bjerre ◽  
T. Hvitved-Jacobsen ◽  
B. Teichgräber ◽  
D. te Heesen

The Emscher river in the Ruhr district, Germany, is at present acting as a large wastewater collector receiving untreated and mechanically treated wastewater. Before the Emscher flows into the river Rhine, treatment takes place in a biological wastewater treatment plant. The transformations of the organic matter in the Emscher affect the river catchment, the subsequent treatment and the river quality. This paper focuses on evaluation of methods for quantification of the microbial transformations of wastewater in the Emscher with emphasis on characterization of wastewater quality changes in terms of biodegradability of organic matter and viable biomass. The characterization is based on methods taken from the activated sludge process in wastewater treatment. Methods were evaluated on the basis of laboratory investigations of water samples from the Emscher. Incubation in batch reactors under aerobic, anoxic and anaerobic conditions were made and a case study was performed. The methods described will be used in an intensive study of wastewater transformations in the Emscher river. This study will be a basis for future investigations of wastewater quality changes in the Emscher.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 127
Author(s):  
Pedro García-Caparrós ◽  
Cristina Velasquez Espino ◽  
María Teresa Lao

The reuse of drainages for cultivating more salt tolerant crops can be a useful tool especially in arid regions, where there are severe problems for crops water management. Dracaena deremensis L. plants were cultured in pots with sphagnum peat-moss and were subjected to three fertigation treatments for 8 weeks: control treatment or standard nutrient solution (D0), raw leachates from Chrysalidocarpus lutescens H. Wendl plants (DL) and the same leachate blending with H2O2 (1.2 M) at 1% (v/v) (DL + H2O2). After harvesting, ornamental and biomass parameters, leaf and root proline and total soluble sugar concentration and nutrient balance were assessed in each fertigation treatment. Plant height, leaf and total dry weight had the highest values in plants fertigated with leachates with H2O2, whereas root length, leaf number, RGB values and pigment concentration declined significantly in plants fertigated with leachates from C. lutescens with or without H2O2. The fertigation with leachates, regardless of the presence or absence of H2O2 increased root and leaf proline concentration. Nevertheless, root and leaf total soluble sugar concentration did not show a clear trend under the treatments assessed. Regarding nutrient balance, the addition of H2O2 in the leachate resulted in an increase in plant nutrient uptake and efficiency compared to the control treatment. The fertigation with leachates with or without H2O2 increased nitrogen and potassium leached per plant compared to plants fertigated with the standard nutrient solution. The reuse of drainages is a viable option to produce ornamental plants reducing the problematic associated with the water consumption and the release of nutrients into the environment.


2021 ◽  
pp. 0734242X2098205
Author(s):  
Katekanya Tadsuwan ◽  
Sandhya Babel

Plastic waste has become a global environmental concern. One type of plastic waste is microplastics (MPs), which can spread easily in the environment. Wastewater effluent is one of the land-based sources of MPs. This study investigates the amount of microplastic (MP) pollution in an urban wastewater treatment plant (WWTP) in Thailand. Water samples were collected and examined to find the types, morphology and sources of MPs. Wastewater was filtered through a set of sieves ranging from 5 mm to 0.05 mm. Sludge samples were also collected to find the potential risk from the application of dried sewage sludge. Fourier-transform infrared spectroscopy (FTIR) was used to confirm the types of MPs. The amount of MPs in the influent was 26.6 ± 11.8 MPs/L. More than one-third of MP particles were removed after a grit trap, followed by 14.24% removal in the secondary treatment. If the peak flow rate of the WWTP is reached, 2.32 × 109 MP particles can be released daily. The amount of MPs in a sludge sample was 8.12 ± 0.28 × 103 particles/kg dry weight. Dry sludge is one of the potential sources of MP contamination in agricultural soil. Most MPs in the liquid fraction and sludge sample were fibres. Results from FTIR analysis showed that the major types of MPs in the WWTP were polyester fibres, followed by polypropylene, polyethylene, silicone polymer and polystyrene. This finding indicates that a conventional WWTP may act as a path by which MPs enter the environment.


Sign in / Sign up

Export Citation Format

Share Document