scholarly journals Investigation of mechanical, thermal and electrical parameters of gel combustion-derived cubic zirconia/epoxy resin composites for high-voltage insulation

Cerâmica ◽  
2020 ◽  
Vol 66 (378) ◽  
pp. 186-196
Author(s):  
J. S. Sagar ◽  
S. J. Kashyap ◽  
G. M. Madhu ◽  
Pradipkumar Dixit

Abstract The present study deals with the fabrication of epoxy composites reinforced with synthesized nano-zirconia, and to study their properties for high-voltage applications. The epoxy composites were extensively characterized to understand the morphology, mechanical, thermal, and electrical insulating behavior. The surface morphology and molecular structure of the nanoparticle and its interaction with the base matrix ware investigated by scanning electron microscopy, Fourier-transform infrared spectroscopy, and X-ray diffraction (XRD). XRD profiles confirmed that particles were crystalline and nanosized. Moreover, the tensile characteristics were analyzed using various theoretical models that predict the stiffness of these composites. The glass transition temperature of the epoxy/ZrO2 composite increased with the increase in nanofiller content. The AC breakdown voltage reached a maximum of 14.8 kV for 2 wt% ZrO2 composite. The prepared composites have the potential to act as high-performance insulation materials.

Author(s):  
Mark H. Ellisman

The increased availability of High Performance Computing and Communications (HPCC) offers scientists and students the potential for effective remote interactive use of centralized, specialized, and expensive instrumentation and computers. Examples of instruments capable of remote operation that may be usefully controlled from a distance are increasing. Some in current use include telescopes, networks of remote geophysical sensing devices and more recently, the intermediate high voltage electron microscope developed at the San Diego Microscopy and Imaging Resource (SDMIR) in La Jolla. In this presentation the imaging capabilities of a specially designed JEOL 4000EX IVEM will be described. This instrument was developed mainly to facilitate the extraction of 3-dimensional information from thick sections. In addition, progress will be described on a project now underway to develop a more advanced version of the Telemicroscopy software we previously demonstrated as a tool to for providing remote access to this IVEM (Mercurio et al., 1992; Fan et al., 1992).


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 235
Author(s):  
Shuqi Zhao ◽  
Tongtong Yu ◽  
Ziming Wang ◽  
Shilei Wang ◽  
Limei Wei ◽  
...  

Two-dimensional (2D) materials driven by their unique electronic and optoelectronic properties have opened up possibilities for their various applications. The large and high-quality single crystals are essential to fabricate high-performance 2D devices for practical applications. Herein, IV-V 2D GeP single crystals with high-quality and large size of 20 × 15 × 5 mm3 were successfully grown by the Bi flux growth method. The crystalline quality of GeP was confirmed by high-resolution X-ray diffraction (HRXRD), Laue diffraction, electron probe microanalysis (EPMA) and Raman spectroscopy. Additionally, intrinsic anisotropic optical properties were investigated by angle-resolved polarized Raman spectroscopy (ARPRS) and transmission spectra in detail. Furthermore, we fabricated high-performance photodetectors based on GeP, presenting a relatively large photocurrent over 3 mA. More generally, our results will significantly contribute the GeP crystal to the wide optoelectronic applications.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1085
Author(s):  
Patricia Castaño-Rivera ◽  
Isabel Calle-Holguín ◽  
Johanna Castaño ◽  
Gustavo Cabrera-Barjas ◽  
Karen Galvez-Garrido ◽  
...  

Organoclay nanoparticles (Cloisite® C10A, Cloisite® C15) and their combination with carbon black (N330) were studied as fillers in chloroprene/natural/butadiene rubber blends to prepare nanocomposites. The effect of filler type and load on the physical mechanical properties of nanocomposites was determined and correlated with its structure, compatibility and cure properties using Fourier Transformed Infrared (FT-IR), X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and rheometric analysis. Physical mechanical properties were improved by organoclays at 5–7 phr. Nanocomposites with organoclays exhibited a remarkable increase up to 46% in abrasion resistance. The improvement in properties was attributed to good organoclay dispersion in the rubber matrix and to the compatibility between them and the chloroprene rubber. Carbon black at a 40 phr load was not the optimal concentration to interact with organoclays. The present study confirmed that organoclays can be a reinforcing filler for high performance applications in rubber nanocomposites.


2015 ◽  
Vol 764-765 ◽  
pp. 138-142 ◽  
Author(s):  
Fa Ta Tsai ◽  
Hsi Ting Hou ◽  
Ching Kong Chao ◽  
Rwei Ching Chang

This work characterizes the mechanical and opto-electric properties of Aluminum-doped zinc oxide (AZO) thin films deposited by atomic layer deposition (ALD), where various depositing temperature, 100, 125, 150, 175, and 200 °C are considered. The transmittance, microstructure, electric resistivity, adhesion, hardness, and Young’s modulus of the deposited thin films are tested by using spectrophotometer, X-ray diffraction, Hall effect analyzer, micro scratch, and nanoindentation, respectively. The results show that the AZO thin film deposited at 200 °C behaves the best electric properties, where its resistance, Carrier Concentration and mobility reach 4.3×10-4 Ωcm, 2.4×1020 cm-3, and 60.4 cm2V-1s-1, respectively. Furthermore, microstructure of the AZO films deposited by ALD is much better than those deposited by sputtering.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3783
Author(s):  
Jian-Qing Qiu ◽  
Huan-Qing Xie ◽  
Ya-Hao Wang ◽  
Lan Yu ◽  
Fang-Yuan Wang ◽  
...  

The removal of organic pollutants using green environmental photocatalytic degradation techniques urgently need high-performance catalysts. In this work, a facile one-step hydrothermal technique has been successfully applied to synthesize a Nb2O5 photocatalyst with uniform micro-flower structure for the degradation of methyl orange (MO) under UV irradiation. These nanocatalysts are characterized by transmission and scanning electron microscopies (TEM and SEM), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) method, and UV-Vis diffuse reflectance spectroscopy (DRS). It is found that the prepared Nb2O5 micro-flowers presents a good crystal phases and consist of 3D hierarchical nanosheets with 400–500 nm in diameter. The surface area is as large as 48.6 m2 g−1. Importantly, the Nb2O5 micro-flowers exhibit superior catalytic activity up to 99.9% for the photodegradation of MO within 20 mins, which is about 60-fold and 4-fold larger than that of without catalysts (W/O) and commercial TiO2 (P25) sample, respectively. This excellent performance may be attributed to 3D porous structure with abundant catalytic active sites.


2021 ◽  
pp. 2002125
Author(s):  
Jokin Rikarte ◽  
Iñaki Madinabeitia ◽  
Giorgio Baraldi ◽  
Francisco José Fernández‐Carretero ◽  
Víctor Bellido‐González ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document