scholarly journals Obesity, bariatric surgery and oxidative stress

2017 ◽  
Vol 63 (3) ◽  
pp. 229-235 ◽  
Author(s):  
Roberta Cattaneo Horn ◽  
Gabriela Tassotti Gelatti ◽  
Natacha Cossettin Mori ◽  
Ana Caroline Tissiani ◽  
Mariana Spanamberg Mayer ◽  
...  

Summary Introduction: Obesity refers to the accumulation of fatty tissues and it favors the occurrence of oxidative stress. Alternatives that can contribute to body weight reduction have been investigated in order to reduce the production of reactive oxygen species responsible for tissue damage. The aim of the current study was to assess whether the oxidant and antioxidant markers of obese women before and after bariatric surgery were able to reduce oxidative damage. Method: We have assessed 16 morbidly obese women five days before and 180 days after the surgery. The control group comprised 16 non-obese women. Levels of thiobarbituric acid-reactive substances, carbonylated proteins, reduced glutathione and ascorbic acid were assessed in the patients' plasma. Results: Levels of lipid peroxidation and protein carbonylation in the pre-surgical obese women were higher than those of the controls and post-surgical obese women. Levels of reduced glutathione in the pre-surgical obese women were high compared to the controls, and declined after surgery. Levels of ascorbic acid fell in the pre--surgical obese women compared to the control and post-surgical obese women. Conclusion: Body weight influences the production of reactive oxygen species. Bariatric surgery, combined with weight loss and vitamin supplementation, reduces cellular oxidation, thus reducing tissue damage.

2012 ◽  
Vol 48 (4) ◽  
pp. 659-665 ◽  
Author(s):  
Aline Emmer Ferreira Furman ◽  
Railson Henneberg ◽  
Priscila Bacarin Hermann ◽  
Maria Suely Soares Leonart ◽  
Aguinaldo José do Nascimento

Sickle cell disease promotes hemolytic anemia and occlusion of small blood vessels due to the presence of high concentrations of hemoglobin S, resulting in increased production of reactive oxygen species and decreased antioxidant defense capacity. The aim of this study was to evaluate the protective action of a standardized extract of Ginkgo biloba (EGb 761), selected due to its high content of flavonoids and terpenoids, in erythrocytes of patients with sickle cell anemia (HbSS, SS erythrocytes) subjected to oxidative stress using tert-butylhydroperoxide or 2,2-azobis-(amidinepropane)-dihydrochloride, in vitro. Hemolysis indexes, reduced glutathione, methemoglobin concentrations, lipid peroxidation, and intracellular reactive oxygen species were determined. SS erythrocytes displayed increased rates of oxidation of hemoglobin and membrane lipid peroxidation compared to normal erythrocytes (HbAA, AA erythrocytes), and the concentration of EGb 761 necessary to achieve the same antioxidant effect in SS erythrocytes was at least two times higher than in normal ones, inhibiting the formation of intracellular reactive oxygen species (IC50 of 13.6 µg/mL), partially preventing lipid peroxidation (IC50 of 242.5 µg/mL) and preventing hemolysis (IC50 of 10.5 µg/mL). Thus, EGb 761 has a beneficial effect on the oxidative status of SS erythrocytes. Moreover, EGb 761 failed to prevent oxidation of hemoglobin and reduced glutathione at the concentrations examined.


2020 ◽  
Vol 21 (9) ◽  
pp. 3161 ◽  
Author(s):  
Luigi Di Luigi ◽  
Paolo Sgrò ◽  
Guglielmo Duranti ◽  
Stefania Sabatini ◽  
Daniela Caporossi ◽  
...  

Oxidative stress linked to vascular damage plays an important role in the pathogenesis of systemic sclerosis (SSc). Indeed, vascular damage at nailfold capillaroscopy in patients with Raynaud’s Phenomenon (RP) is a major risk factor for the development of SSc together with the presence of specific autoantiobodies. Here, we investigated the effects of the phosphodiesterase type 5 inhibitor (PDE5i) sildenafil, currently used in the management of RP, in modulating the proinflammatory response of dermal fibroblasts to oxidative stress in vitro. Human fibroblasts isolated from SSc patients and healthy controls were exposed to exogenous reactive oxygen species (ROS) (100 µM H2O2), in the presence or absence of sildenafil (1 µM). Treatment with sildenafil significantly reduced dermal fibroblast gene expression and cellular release of IL-6, known to play a central role in the pathogenesis of tissue damage in SSc and IL-8, directly induced by ROS. This reduction was associated with suppression of STAT3-, ERK-, NF-κB-, and PKB/AKT-dependent pathways. Our findings support the notion that the employment of PDE5i in the management of RP may be explored for its efficacy in modulating the oxidative stress-induced proinflammatory activation of dermal fibroblasts in vivo and may ultimately aid in the prevention of tissue damage caused by SSc.


2020 ◽  
pp. 1-4
Author(s):  
Anindita Deb ◽  
Sangita Sutradhar ◽  
Shiv Shankar Singh

Diabetes is a combination of different metabolic disorders as a result of insulin deficiency and improper action. Improper neutralization of reactive oxygen species produced during metabolism results in oxidative stress in living organisms. Melatonin is a known antioxidant, neutralizes reactive oxygen species in living organisms. We have evaluated the effectiveness of low doses (25µg, 50µg and 100µg/100g B.wt.) of melatonin on diabetes caused oxidative damages in the ovary of mice. The induction of diabetes increased the lipid peroxidation (MDA level) and decreased the antioxidant enzyme (SOD and CAT) activity, reduced glutathione (GSH) level, Nrf2 and HO-1 reactivity in the ovary of mice. Melatonin supplementation suppressed the MDA level and increased the SOD, and CAT activity, GSH levels, Nrf2 and HO-1 reactivity in the ovary of experimental mice in a dose-dependent pattern. Therefore, the present study may suggest that melatonin ameliorates the adverse effects of diabetes by reducing the oxidative stress in the ovary of experimental mice.


2018 ◽  
Vol 5 (2) ◽  
pp. 22
Author(s):  
Handy Arief ◽  
M Aris Widodo

Wound healing is a complex dynamic process characterized by a series of events that occur in almost all type of tissue damage. In the early phase of the inflammatory response, neutrophils and macrophages enters into the injured tissue and the cells produce reactive oxygen species that can give a beneficial or detrimental effects. Oxidative stress is a condition occurs that shows imbalance between prooxidant or free radical and antioxidant that have a function to maintain the condition of the tissue damage that occurs. So Oxidative stress occurs when the production of Reactive Oxygen Species occurring is higher than the antioxidants existing as an intrinsic defense. Reactive Oxygen Species and Reactive Nitrogen Species are important components in the healing process of wounds and is necessary to be in the state of homeostasis to prevent oksidatif stress. The major components of ROS are superoxide (O2•), hydroxyl radical (OH•) and hydrogen peroxide (H2O2), which includes RNS are nitric oxide (NO•), nitrous oxide (NO2•), nitroxyl anion (HNO) and peroxynitrite (ONOO-) which could be form by the reaction between superoxide and nitric oxide. The existence of excessive O2 amount in the wound and the presence of excess NO can increase the incidence of oxidative stress that interfere with wound healing process. Oxidative stress plays a role in the inflammatory phase, proliferation and remodeling phase by increasing angiogenesis and affect other cells including endothelial cells in secreting NO. So the strategy in controlling oxidative stress is by increasing antioxidant level which is a scavenger to free radical excessive superoxide formation so preventing interference with the wound healing process. 


2021 ◽  
Vol 22 (24) ◽  
pp. 13547
Author(s):  
Boram Kim ◽  
Hyunho Yoon ◽  
Tak Kim ◽  
Sanghoon Lee

Ovarian tissue cryopreservation is the only option for preserving fertility in adult and prepubertal cancer patients who require immediate chemotherapy or do not want ovarian stimulation. However, whether ovarian tissue cryopreservation can ameliorate follicular damage and inhibit the production of reactive oxygen species in cryopreserved ovarian tissue remains unclear. Oxidative stress is caused by several factors, such as UV exposure, obesity, age, oxygen, and cryopreservation, which affect many of the physiological processes involved in reproduction, from maturation to fertilization, embryonic development, and pregnancy. Here, freezing and thawing solutions were pre-treated with N-acetylcysteine (NAC) and klotho protein upon the freezing of ovarian tissue. While both NAC and klotho protein suppressed DNA fragmentation by scavenging reactive oxygen species, NAC induced apoptosis and tissue damage in mouse ovarian tissue. Klotho protein inhibited NAC-induced apoptosis and restored cellular tissue damage, suggesting that klotho protein may be an effective antioxidant for the cryopreservation of ovarian tissue.


2004 ◽  
Vol 71 ◽  
pp. 121-133 ◽  
Author(s):  
Ascan Warnholtz ◽  
Maria Wendt ◽  
Michael August ◽  
Thomas Münzel

Endothelial dysfunction in the setting of cardiovascular risk factors, such as hypercholesterolaemia, hypertension, diabetes mellitus and chronic smoking, as well as in the setting of heart failure, has been shown to be at least partly dependent on the production of reactive oxygen species in endothelial and/or smooth muscle cells and the adventitia, and the subsequent decrease in vascular bioavailability of NO. Superoxide-producing enzymes involved in increased oxidative stress within vascular tissue include NAD(P)H-oxidase, xanthine oxidase and endothelial nitric oxide synthase in an uncoupled state. Recent studies indicate that endothelial dysfunction of peripheral and coronary resistance and conductance vessels represents a strong and independent risk factor for future cardiovascular events. Ways to reduce endothelial dysfunction include risk-factor modification and treatment with substances that have been shown to reduce oxidative stress and, simultaneously, to stimulate endothelial NO production, such as inhibitors of angiotensin-converting enzyme or the statins. In contrast, in conditions where increased production of reactive oxygen species, such as superoxide, in vascular tissue is established, treatment with NO, e.g. via administration of nitroglycerin, results in a rapid development of endothelial dysfunction, which may worsen the prognosis in patients with established coronary artery disease.


2019 ◽  
Vol 18 (4) ◽  
pp. 297-302
Author(s):  
Sriset Yollada ◽  
Chatuphonprasert Waranya ◽  
Jarukamjorn Kanokwan

Bergenin is a C-glucoside derivative of gallic acid but its antioxidant and hepatoprotective effects have not previously been compared with gallic acid. Male ICR mice were administered bergenin (10, 50, and 250 mg/kg/day) or gallic acid (100 mg/kg/day) for 7 consecutive days before a single administration of ethanol (5 g/kg). Liver sections were histopathologically examined. Aspartate aminotransferase, alanine aminotransferase, reactive oxygen species, and malondialdehyde levels were determined in plasma. Total glutathione, reduced glutathione, and oxidized glutathione levels were determined in liver homogenates. Ethanol induced hepatic injury with prominent histopathological markers including nuclear pyknosis and necrotic areas and this accorded with increases in the plasma levels of aspartate aminotransferase, alanine aminotransferase, reactive oxygen species, and malondialdehyde. Moreover, ethanol disturbed hepatic glutathione homeostasis by reducing glutathione stores. Hepatic injury in the ethanol-induced mice was prevented with bergenin and gallic acid by significant decreases in plasma aspartate aminotransferase, alanine aminotransferase, reactive oxygen species, and malondialdehyde levels and restoration of the hepatic glutathione profile through an increase in the reduced glutathione/oxidized glutathione ratio. Bergenin at 10 mg/kg/day showed comparable hepatoprotective activity to gallic acid in an ethanol-induced mouse model of oxidative stress. Therefore, bergenin might be a promising candidate for further development as a novel hepatoprotective product.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Amnah M. Alshangiti ◽  
Eszter Tuboly ◽  
Shane V. Hegarty ◽  
Cathal M. McCarthy ◽  
Aideen M. Sullivan ◽  
...  

Neuroblastoma is an embryonal malignancy that arises from cells of sympathoadrenal lineage during the development of the nervous system. It is the most common pediatric extracranial solid tumor and is responsible for 15% of childhood deaths from cancer. Fifty percent of cases are diagnosed as high-risk metastatic disease with a low overall 5-year survival rate. More than half of patients experience disease recurrence that can be refractory to treatment. Amplification of the MYCN gene is an important prognostic indicator that is associated with rapid disease progression and a poor prognosis, highlighting the need for new therapeutic approaches. In recent years, there has been an increasing focus on identifying anticancer properties of naturally occurring chalcones, which are secondary metabolites with variable phenolic structures. Here, we report that 4-hydroxychalcone is a potent cytotoxin for MYCN-amplified IMR-32 and SK-N-BE (2) neuroblastoma cells, when compared to non-MYCN-amplified SH-SY5Y neuroblastoma cells and to the non-neuroblastoma human embryonic kidney cell line, HEK293t. Moreover, 4-hydroxychalcone treatment significantly decreased cellular levels of the antioxidant glutathione and increased cellular reactive oxygen species. In addition, 4-hydroxychalcone treatment led to impairments in mitochondrial respiratory function, compared to controls. In support of this, the cytotoxic effect of 4-hydroxychalcone was prevented by co-treatment with either the antioxidant N-acetyl-L-cysteine, a pharmacological inhibitor of oxidative stress-induced cell death (IM-54) or the mitochondrial reactive oxygen species scavenger, Mito-TEMPO. When combined with the anticancer drugs cisplatin or doxorubicin, 4-hydroxychalcone led to greater reductions in cell viability than was induced by either anti-cancer agent alone. In summary, this study identifies a cytotoxic effect of 4-hydroxychalcone in MYCN-amplified human neuroblastoma cells, which rationalizes its further study in the development of new therapies for pediatric neuroblastoma.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4138
Author(s):  
Yeon-Jin Cho ◽  
Sun-Hye Choi ◽  
Ra-Mi Lee ◽  
Han-Sung Cho ◽  
Hyewhon Rhim ◽  
...  

Gintonin is a kind of ginseng-derived glycolipoprotein that acts as an exogenous LPA receptor ligand. Gintonin has in vitro and in vivo neuroprotective effects; however, little is known about the cellular mechanisms underlying the neuroprotection. In the present study, we aimed to clarify how gintonin attenuates iodoacetic acid (IAA)-induced oxidative stress. The mouse hippocampal cell line HT22 was used. Gintonin treatment significantly attenuated IAA-induced reactive oxygen species (ROS) overproduction, ATP depletion, and cell death. However, treatment with Ki16425, an LPA1/3 receptor antagonist, suppressed the neuroprotective effects of gintonin. Gintonin elicited [Ca2⁺]i transients in HT22 cells. Gintonin-mediated [Ca2⁺]i transients through the LPA1 receptor-PLC-IP3 signaling pathway were coupled to increase both the expression and release of BDNF. The released BDNF activated the TrkB receptor. Induction of TrkB phosphorylation was further linked to Akt activation. Phosphorylated Akt reduced IAA-induced oxidative stress and increased cell survival. Our results indicate that gintonin attenuated IAA-induced oxidative stress in neuronal cells by activating the LPA1 receptor-BDNF-TrkB-Akt signaling pathway. One of the gintonin-mediated neuroprotective effects may be achieved via anti-oxidative stress in nervous systems.


2021 ◽  
Author(s):  
Małgorzata Olszowy-Tomczyk

AbstractOxidative stress, associated with an imbalance between the oxidants (reactive oxygen species) and the antioxidants in the body, contributes to the development of many diseases. The body’s fight against reactive oxygen species is supported by antioxidants. Nowadays, there are too many analytical methods, but there is no one universal technique for assessing antioxidant properties. Moreover, the applied different ways of expressing the results lead to their incompatibility and unreasonable interpretation. The paper is a literature review concerning the most frequent ways of antioxidant activities expression and for an easy and universal method of the obtained results discussion. This paper is an attempt to point out their disadvantages and advantages. The manuscript can support the searching interpretation of the obtained results which will be a good tool for the development of a number of fields, especially medicine what can help in the future detection and treatment of many serious diseases. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document