scholarly journals New agroclimatic approach for soybean sowing dates recommendation: A case study

Author(s):  
Rafael Battisti ◽  
Paulo C. Sentelhas

The objective of this study was to introduce a new approach to recommend sowing dates for soybean crop in Brazil, considering the climatic conditions and crop yield. The first step was to define the periods when air temperature is smaller than 40 °C and greater than 1 °C in at least 80% of the years, and with at least 60% of relative crop evapotranspiration during the establishment phase in more than 50% of the years. The actual yield of crop was estimated by FAO Agroecological zone model for the suitable sowing dates. Based on that, when actual yield overcome the production cost in more than 80% of years and mean air temperature along the cycle is between 20 and 30 °C, the sowing date is classified as suitable, but if actual yield overcome the production cost only between 60 and 80% of the years or mean air temperature is not between 20 and 30 °C, the date is classified as marginal. Sowing dates are considered as unsuitable if actual crop yield overcome the production cost in less than 60% of the years. The new approach was applied, as case studies, for Cruz Alta, RS, Jataí, GO, and Balsas, MA, in order to compare it with the agroclimatic zoning approach presently used in Brazil. The new procedures can generate more accurate information to support sowing dates recommendation for soybean, minimizing yield losses from climatic risk.

Agriculture ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 156 ◽  
Author(s):  
Aritz Royo-Esnal ◽  
Francisco Valencia-Gredilla

Crop rotation in winter cereals in semiarid Mediterranean climates is highly desirable to prevent weed infestations, but the climatic conditions make it difficult to implement alternative crops to winter cereals. Camelina (Camelina sativa (L.) Crantz) is an interesting option, as it is able to produce profitable yields thanks to its tolerance to cold and drought. In this work, three autumn–winter sowing dates (SD1, October; SD2, December; SD3, January) and two sowing rates (R1, 8 kg ha–1; R2, 11 kg ha–1) were chosen to evaluate the effectiveness of these cultural methods to control weeds over three seasons, and to determine effects on camelina seed yield. Results showed that a significant reduction of weed coverage was obtained by delaying the sowing date. Sowing rates did not show differences in weed coverage. In contrast, no apparent yield penalty was observed among sowing dates and rates. These results show that the introduction of camelina as a rotational crop in semiarid Mediterranean climates is a feasible option for helping to suppress winter weeds, as well as to provide productive seed yield in these climatic conditions.


1997 ◽  
Vol 77 (1) ◽  
pp. 23-31 ◽  
Author(s):  
G. K. Hotsonyame ◽  
L. A. Hunt

Rate of leaf appearance is a characteristic that can impact on the rate of development of a crop canopy. For wheat (Triticum aestivum L.), it is generally thought to be constant within a sowing date, but to vary among sowing dates. Such variation has been variously attributed to differences in the rate of change of photoperiod, the absolute photoperiod, or the mean air temperature. This study was undertaken to provide further information on the photoperiod and temperature effects on rate of leaf appearance in wheat. Field studies were conducted at Elora, Ontario at five sowing dates under natural and extended (20 h) photoperiod conditions. Two genotypes each of spring and winter wheat were grown under 0 and 150 kg ha−1 nitrogen fertilization. The results indicated that variations in rate of leaf appearance were not due to rate of change in photoperiod or absolute photoperiod at emergence. The change in rate of leaf appearance during a growth cycle was constant when mean air temperature during growth varied in a narrow range (less than 10 °C), but varied when there were wider ranges (over 10 °C) of temperature variation. Rate of leaf appearance was lower for the September seeding, at which time temperatures were around 5 °C, but were quite similar for May, June, July and August seedings even though temperatures ranged from approximately 15 °C (May) to 23 °C (June). The results suggested that the leaf appearance rate–temperature response curve is curvilinear, as found in some growth room studies, and supported work indicating that the phyllochron would depend on the temperature at the time of measurement. Key words: Wheat, photoperiod, temperature, nitrogen, sowing date, leaf appearance rate


2021 ◽  
Vol 23 (2) ◽  
pp. 69-80
Author(s):  
AA Begum ◽  
MAK Mian ◽  
J Rahman ◽  
MM Khanum ◽  
MZ Ali ◽  
...  

The field experiment was conducted at Agronomy research field, Joydebpur, Gazipur (Latitude: 23.999941, Longitude: 90.420273), RARS, Jamalpur (Latitude: 24.923025, Longitude: 89.950111) and ARS, Rajbari, Dinajpur (Latitude: 25.63544, Longitude: 88.65144) of BARI during rabi of 2018 – 2019 to observe the growth behavior and yield of wheat as influenced by prevailing air temperature based on sowing time. There were five sowing dates viz., D1 = 10 November, D2 =20 November, D3 = 30 November, D4=10 December and D5=20 December. Sowing date showed great influence on TDM production, LAI, physiological maturity, yield and yield components of wheat. 30 November sowing produced the maximum TDM and LAI followed by 20 November sowing. These parameters finally contributed to higher grain yield than earlier and later sowing date. The crop sown on 30 November took the longest period (105, 106 and 109 days, respectively) to attain the physiological maturity with the highest GDD (1639, 1638 and 1640  respectively) and 20 December sown crop took the shortest period (95 , 96  and 98 days  respectively) to attain the physiological maturity with the lowest GDD (1530, 1528 and 1525 at Joydebpur, Jamalpur and Rajbari, respectively).It was also found that 30 November sown crop produced the higher grain yield (4.90 t ha-1, 4.99 t ha-1 and 5.03 t ha-1 at Joydebpur, Jamalpur and Rajbari, respectively).The results revealed that 20-30 November sowing produced higher grain yield might be due to favourable air temperature for growth and development. Late sowing after November 30 produced lower grain yield due to high temperature prevailed at the later growth stage (March) of wheat at Joydebpur, Jamalpur and Rajbari region. The temperature co-efficient of wheat was estimated at 2.41 t ha-1 (1.95-2.89 t ha-1) indicated grain yield reduced 2.41 t ha-1 per 1°C increased of air temperature and effect of temperature on the grain yield of wheat was estimated at 81-84%. Bangladesh Agron. J. 2020, 23(2): 69-80


2012 ◽  
Vol 63 (10) ◽  
pp. 974 ◽  
Author(s):  
Davide Cammarano ◽  
Bruno Basso ◽  
Lydia Stefanova ◽  
Peter Grace

Projected increases in atmospheric carbon dioxide concentration ([CO2]) and air temperature associated with future climate change are expected to affect crop development, crop yield, and, consequently, global food supplies. They are also likely to change agricultural production practices, especially those related to agricultural water management and sowing date. The magnitude of these changes and their implications to local production systems are mostly unknown. The objectives of this study were to: (i) simulate the effect of projected climate change on spring wheat (Triticum aestivum L. cv. Lang) yield and water use for the subtropical environment of the Darling Downs, Queensland, Australia; and (ii) investigate the impact of changing sowing date, as an adaptation strategy to future climate change scenarios, on wheat yield and water use. The multi-model climate projections from the IPCC Coupled Model Intercomparison Project (CMIP3) for the period 2030–2070 were used in this study. Climate scenarios included combinations of four changes in air temperature (0°C, 1°C, 2°C, and 3°C), three [CO2] levels (380 ppm, 500 ppm, and 600 ppm), and three changes in rainfall (–30%, 0%, and +20%), which were superimposed on observed station data. Crop management scenarios included a combination of six sowing dates (1 May, 10 May, 20 May, 1 June, 10 June, and 20 June) and three irrigation regimes (no irrigation (NI), deficit irrigation (DI), and full irrigation (FI)). Simulations were performed with the model DSSAT 4.5, using 50 years of daily weather data. We found that: (1) grain yield and water-use efficiency (yield/evapotranspiration) increased linearly with [CO2]; (2) increases in [CO2] had minimal impact on evapotranspiration; (3) yield increased with increasing temperature for the irrigated scenarios (DI and FI), but decreased for the NI scenario; (4) yield increased with earlier sowing dates; and (5) changes in rainfall had a small impact on yield for DI and FI, but a high impact for the NI scenario.


2001 ◽  
Vol 49 (3) ◽  
pp. 293-297
Author(s):  
S. O. Bakare ◽  
M. G. M. Kolo ◽  
J. A. Oladiran

There was a significant interaction effect between the variety and the sowing date for the number of productive tillers, indicating that the response to sowing date varied with the variety. A significant reduction in the number of productive tillers became evident when sowing was delayed till 26 June in the straggling variety as compared to sowing dates in May. Lower numbers of productive tillers were also recorded when the sowing of the erect variety was further delayed till 10 July. The grain yield data showed that it is not advisable to sow the straggling variety later than 12 June, while sowing may continue till about 26 June for the erect variety in the study area.


Diversity ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 319
Author(s):  
Cristian Pérez-Granados ◽  
Karl-L. Schuchmann

Climatic conditions represent one of the main constraints that influence avian calling behavior. Here, we monitored the daily calling activity of the Undulated Tinamou (Crypturellus undulatus) and the Chaco Chachalaca (Ortalis canicollis) during the dry and wet seasons in the Brazilian Pantanal. We aimed to assess the effects of climate predictors on the vocal activity of these focal species and evaluate whether these effects may vary among seasons. Air temperature was positively associated with the daily calling activity of both species during the dry season. However, the vocal activity of both species was unrelated to air temperature during the wet season, when higher temperatures occur. Daily rainfall was positively related to the daily calling activity of both species during the dry season, when rainfall events are scarce and seem to act as a trigger for breeding phenology of the focal species. Nonetheless, air temperature was negatively associated with the daily calling activity of the Undulated Tinamou during the wet season, when rainfall was abundant. This study improves our understanding of the vocal behavior of tropical birds and their relationships with climate, but further research is needed to elucidate the mechanisms behind the associations found in our study.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 927
Author(s):  
Jamshad Hussain ◽  
Tasneem Khaliq ◽  
Muhammad Habib ur Rahman ◽  
Asmat Ullah ◽  
Ishfaq Ahmed ◽  
...  

Rising temperature from climate change is the most threatening factor worldwide for crop production. Sustainable wheat production is a challenge due to climate change and variability, which is ultimately a serious threat to food security in Pakistan. A series of field experiments were conducted during seasons 2013–2014 and 2014–2015 in the semi-arid (Faisalabad) and arid (Layyah) regions of Punjab-Pakistan. Three spring wheat genotypes were evaluated under eleven sowing dates from 16 October to 16 March, with an interval of 14–16 days in the two regions. Data for the model calibration and evaluation were collected from field experiments following the standard procedures and protocols. The grain yield under future climate scenarios was simulated by using a well-calibrated CERES-wheat model included in DSSAT v4.7. Future (2051–2100) and baseline (1980–2015) climatic data were simulated using 29 global circulation models (GCMs) under representative concentration pathway (RCP) 8.5. These GCMs were distributed among five quadrants of climatic conditions (Hot/Wet, Hot/Dry, Cool/Dry, Cool/Wet, and Middle) by a stretched distribution approach based on temperature and rainfall change. A maximum of ten GCMs predicted the chances of Middle climatic conditions during the second half of the century (2051–2100). The average temperature during the wheat season in a semi-arid region and arid region would increase by 3.52 °C and 3.84 °C, respectively, under Middle climatic conditions using the RCP 8.5 scenario during the second half-century. The simulated grain yield was reduced by 23.5% in the semi-arid region and 35.45% in the arid region under Middle climatic conditions (scenario). Mean seasonal temperature (MST) of sowing dates ranged from 16 to 27.3 °C, while the mean temperature from the heading to maturity (MTHM) stage was varying between 12.9 to 30.4 °C. Coefficients of determination (R2) between wheat morphology parameters and temperature were highly significant, with a range of 0.84–0.96. Impacts of temperature on wheat sown on 15 March were found to be as severe as to exterminate the crop before heading. The spikes and spikelets were not formed under a mean seasonal temperature higher than 25.5 °C. In a nutshell, elevated temperature (3–4 °C) till the end-century can reduce grain yield by about 30% in semi-arid and arid regions of Pakistan. These findings are crucial for growers and especially for policymakers to decide on sustainable wheat production for food security in the region.


2021 ◽  
Vol 185 ◽  
pp. 106158
Author(s):  
Maryam Bayatvarkeshi ◽  
Suraj Kumar Bhagat ◽  
Kourosh Mohammadi ◽  
Ozgur Kisi ◽  
M. Farahani ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 68
Author(s):  
Arkadiusz M. Tomczyk ◽  
Ewa Bednorz ◽  
Katarzyna Szyga-Pluta

The primary objective of the paper was to characterize the climatic conditions in the winter season in Poland in the years 1966/67–2019/20. The study was based on daily values of minimum (Tmin) and maximum air temperature (Tmax), and daily values of snow cover depth. The study showed an increase in both Tmin and Tmax in winter. The most intensive changes were recorded in north-eastern and northern regions. The coldest winters were recorded in the first half of the analyzed multiannual period, exceptionally cold being winters 1969/70 and 1984/85. The warmest winters occurred in the second half of the analyzed period and among seasons with the highest mean Tmax, particularly winters 2019/20 and 1989/90 stood out. In the study period, a decrease in snow cover depth statistically significant in the majority of stations in Poland was determined, as well as its variability both within the winter season and multiannual.


2011 ◽  
Vol 62 (1) ◽  
pp. 1 ◽  
Author(s):  
R. J. Lawn ◽  
A. T. James

The purpose of this paper and its companion1 is to describe how, in eastern Australia, soybean improvement, in terms of both breeding and agronomy, has been informed and influenced over the past four decades by physiological understanding of the environmental control of phenology. This first paper describes how initial attempts to grow soybean in eastern Australia, using varieties and production practices from the southern USA, met with limited success due to large variety × environment interaction effects on seed yield. In particular, there were large variety × location, variety × sowing date, and variety × sowing date × density effects. These various interaction effects were ultimately explained in terms of the effects of photo-thermal environment on the phenology of different varieties, and the consequences for radiation interception, dry matter production, harvest index, and seed yield. This knowledge enabled the formulation of agronomic practices to optimise sowing date and planting arrangement to suit particular varieties, and underpinned the establishment of commercial production in south-eastern Queensland in the early 1970s. It also influenced the establishment and operation over the next three decades of several separate breeding programs, each targeting phenological adaptation to specific latitudinal regions of eastern Australia. This paper also describes how physiological developments internationally, particularly the discovery of the long juvenile trait and to a lesser extent the semi-dwarf ideotype, subsequently enabled an approach to be conceived for broadening the phenological adaptation of soybeans across latitudes and sowing dates. The application of this approach, and its outcomes in terms of varietal improvement, agronomic management, and the structure of the breeding program, are described in the companion paper.


Sign in / Sign up

Export Citation Format

Share Document