scholarly journals Effect of a simulated heat wave in thermal and aerial environment broiler-rearing environment

2016 ◽  
Vol 36 (2) ◽  
pp. 271-280 ◽  
Author(s):  
Marcos M. do Vale ◽  
Daniella J. de Moura ◽  
Irenilza de A. Nääs ◽  
Thayla M. R. C. Curi ◽  
Karla A. O. Lima

ABSTRACT Global warming increases the occurrence of events such as extreme heat waves. Research on thermal and air conditions affecting broiler-rearing environment are important to evaluate the animal welfare under extreme heat aiming mitigation measures. This study aimed at evaluating the effect of a simulated heat wave, in a climatic chamber, on the thermal and air environment of 42-day-old broilers. One hundred and sixty broilers were housed and reared for 42 days in a climatic chamber; the animals were divided into eight pens. Heat wave simulation was performed on the 42nd day, the period of great impact and data sampling. The analyzed variables were room and litter temperatures, relative humidity, concentrations of oxygen, carbon monoxide and ammonia at each pen. These variables were assessed each two hours, starting at 8 am, simulating a day heating up to 4 pm, when it is reached the maximum temperature. By the results, we concluded that increasing room temperatures promoted a proportional raise in litter temperatures, contributing to ammonia volatilization. In addition, oxygen concentrations decreased with increasing temperatures; and the carbon monoxide was only observed at temperatures above 27.0 °C, relative humidity higher than 88.4% and litter temperatures superior to 30.3 °C.

Atmosphere ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 229 ◽  
Author(s):  
Carolina Viceto ◽  
Susana Cardoso Pereira ◽  
Alfredo Rocha

The comprehensive characterization of heat waves and extreme hot days is fundamental for policymakers due to its vast implications for human health. This study evaluates extreme temperature changes over the Iberian Peninsula for the present climate and future projections, considering extreme temperature indices, cold/heat waves, and a recovery factor, using the Weather Research and Forecasting model. The projected temperatures show an increase of over 6 °C. An increase in the number of summer days and tropical nights and a decrease in frost days is expected. The number of heat waves and their duration and intensity are expected to increase. The number of heat wave days are expected to increase, with much of the average summer season being under heat wave conditions. The recovery factor is expected to decrease. Cold spells are projected to decrease in terms of number, intensity, duration, and number of spell days, whereas the recovery factor is expected to increase. Heat wave analysis was combined with maximum temperature thresholds to isolate extreme heat waves. The results show an increase in extreme heat wave days, with regions experiencing over 10 heat wave days with maximum temperature surpassing 45 °C for the long-term future.


Circulation ◽  
2017 ◽  
Vol 135 (suppl_1) ◽  
Author(s):  
Yi Wang

Background: The association between heat and hospital admissions is well studied, but in Indiana where the regulatory agencies cites lack of evidence for global climate change, local evidence of such an association is critical for Indiana to mitigate the impact of increasing heat. Methods: Using a distributed-lag non-linear model, we studied the effects of moderate (31.7 °C or 90 th percentile of daily mean apparent temperature (AT)), severe (33.5 °C or 95 th percentile of daily mean apparent temperature (AT)) and extreme (36.4 °C or 99 th percentile of AT) heat on hospital admissions (June-August 2007-2012) for cardiovascular (myocardial infarction, myocardial infarction, heart failure) and heat-related diseases in Indianapolis, Indiana located in Marion County. We also examined the added effects of moderate heat waves (AT above the 90 th percentile lasting 2-6 days), severe heat waves (AT above the 95 th percentile lasting 2-6 days) and extreme heat waves (AT above the 99 th percentile lasting 2-6 days). In sensitivity analysis, we tested robustness of our results to 1) different temperature and lag structures and 2) temperature metrics (daily min, max and diurnal temperature range). Results: The relative risks of moderate heat, relative to 29.2°C (75 th percentile of AT), on admissions for cardiovascular disease (CVD), myocardial infarction (MI), heart failure (HF), and heat-related diseases (HD) were 0.98 (0.67, 1.44), 6.28 (1.48, 26.6), 1.38 (0.81, 2.36) and 1.73 (0.58, 5.11). The relative risk of severe heat on admissions for CVD, MI, HF, and HD were 0.93 (0.60, 1.43), 4.46 (0.85, 23.4), 1.30 (0.72, 2.34) and 2.14 (0.43, 10.7). The relative risk of extreme heat were 0.79 (0.26, 2.39), 0.11 (0.087, 1.32), 0.68 (0.18, 2.61), and 0.32 (0.005, 19.5). We also observed statistically significant added effects of moderate heat waves lasting 4 or 6 days on hospital admission for MI and HD and extreme heat waves lasting 4 days on hospital admissions for HD. Results were strengthened for people older than 65. Conclusions: Moderate heat wave lasting 4-6 days were associated with increased hospital admissions for MI and HD diseases and extreme heat wave lasting 4 days were associated with increased admissions for HD.


2017 ◽  
Vol 17 (1) ◽  
pp. 115-125 ◽  
Author(s):  
Guido Ceccherini ◽  
Simone Russo ◽  
Iban Ameztoy ◽  
Andrea Francesco Marchese ◽  
Cesar Carmona-Moreno

Abstract. The purpose of this article is to show the extreme temperature regime of heat waves across Africa over recent years (1981–2015). Heat waves have been quantified using the Heat Wave Magnitude Index daily (HWMId), which merges the duration and the intensity of extreme temperature events into a single numerical index. The HWMId enables a comparison between heat waves with different timing and location, and it has been applied to maximum and minimum temperature records. The time series used in this study have been derived from (1) observations from the Global Summary of the Day (GSOD) and (2) reanalysis data from ERA-Interim. The analysis shows an increasing number of heat waves of both maxima and minima temperatures in the last decades. Results from heat wave analysis of maximum temperature (HWMIdtx) indicate an increase in intensity and frequency of extreme events. Specifically, from 1996 onwards it is possible to observe HWMIdtx spread with the maximum presence during 2006–2015. Between 2006 and 2015 the frequency (spatial coverage) of extreme heat waves had increased to 24.5 observations per year (60.1 % of land cover), as compared to 12.3 per year (37.3 % of land area) in the period from 1981 to 2005 for GSOD stations (reanalysis).


Author(s):  
Günay Can ◽  
Ümit Şahin ◽  
Uğurcan Sayılı ◽  
Marjolaine Dubé ◽  
Beril Kara ◽  
...  

Heat waves are one of the most common direct impacts of anthropogenic climate change and excess mortality their most apparent impact. While Turkey has experienced an increase in heat wave episodes between 1971 and 2016, no epidemiological studies have examined their potential impacts on public health so far. In this study excess mortality in Istanbul attributable to extreme heat wave episodes between 2013 and 2017 is presented. Total excess deaths were calculated using mortality rates across different categories, including age, sex, and cause of death. The analysis shows that three extreme heat waves in the summer months of 2015, 2016, and 2017, which covered 14 days in total, significantly increased the mortality rate and caused 419 excess deaths in 23 days of exposure. As climate simulations show that Turkey is one of the most vulnerable countries in the Europe region to the increased intensity of heat waves until the end of the 21st century, further studies about increased mortality and morbidity risks due to heat waves in Istanbul and other cities, as well as intervention studies, are necessary.


Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 558 ◽  
Author(s):  
Jungmin Lim ◽  
Mark Skidmore

Heat waves are the deadliest type of natural hazard among all weather extremes in the United States. Given the observed and anticipated increase in heat risks associated with ongoing climate change, this study examines community vulnerability to extreme heat and the degree to which heat island mitigation (HIM) actions by state/local governments reduce heat-induced fatalities. The analysis uses all heat events that occurred over the 1996–2011 period for all United States counties to model heat vulnerability. Results show that: (1) Higher income reduces extreme heat vulnerability, while poverty intensifies it; (2) living in mobile homes or rental homes heightens susceptibility to extreme heat; (3) increased heat vulnerability due to the growth of the elderly population is predicted to result in a two-fold increase in heat-related fatalities by 2030; and (4) community heat island mitigation measures reduce heat intensities and thus heat-related fatalities. Findings also show that an additional locally implemented measure reduces the annual death rate by 15%. A falsification test rules out the possibility of spurious inference on the life-saving role of heat island mitigation measures. Overall, these findings inform efforts to protect the most vulnerable population subgroups and guide future policies to counteract the growing risk of deadly heat waves.


Author(s):  
Hojjatollah Yazdanpanah ◽  
Josef Eitzinger ◽  
Marina Baldi

Purpose The purpose of this paper is to assess the spatial and temporal variations of extreme hot days (H*) and heat wave frequencies across Iran. Design/methodology/approach The authors used daily maximum temperature (Tmax) data of 27 synoptic stations in Iran. These data were standardized using the mean and the standard deviation of each day of the year. An extreme hot day was defined when the Z score of daily maximum temperature of that day was equal or more than a given threshold fixed at 1.7, while a heat wave event was considered to occur when the Z score exceeds the threshold for at least three continuous days. According to these criteria, the annual frequency of extreme hot days and the number of heat waves were determined for all stations. Findings The trend analysis of H* shows a positive trend during the past two decades in Iran, with the maximum number of H* (110 cases) observed in 2010. A significant trend of the number of heat waves per year was also detected during 1991-2013 in all the stations. Overall, results indicate that Iran has experienced heat waves in recent years more often than its long-term average. There will be more frequent and intense hot days and heat waves across Iran until 2050, due to estimated increase of mean air temperature between 0.5-1.1 and 0.8-1.6 degree centigrade for Rcp2.6 and Rcp8.8 scenarios, respectively. Originality/value The trend analysis of hot days and heat wave frequencies is a particularly original aspect of this paper. It is very important for policy- and decision-makers especially in agriculture and health sectors of Iran to make some adaptation strategies for future frequent and intense hot days over Iran.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jiayan Ren ◽  
Guohe Huang ◽  
Yongping Li ◽  
Xiong Zhou ◽  
Jinliang Xu ◽  
...  

A heat wave is an important meteorological extreme event related to global warming, but little is known about the characteristics of future heat waves in Guangdong. Therefore, a stepwise-clustered simulation approach driven by multiple global climate models (i.e., GCMs) is developed for projecting future heat waves over Guangdong under two representative concentration pathways (RCPs). The temporal-spatial variations of four indicators (i.e., intensity, total intensity, frequency, and the longest duration) of projected heat waves, as well as the potential changes in daily maximum temperature (i.e., Tmax) for future (i.e., 2006–2095) and historical (i.e., 1976–2005) periods, were analyzed over Guangdong. The results indicated that Guangdong would endure a notable increasing annual trend in the projected Tmax (i.e., 0.016–0.03°C per year under RCP4.5 and 0.027–0.057°C per year under RCP8.5). Evaluations of the multiple GCMs and their ensemble suggested that the developed approach performed well, and the model ensemble was superior to any single GCM in capturing the features of heat waves. The spatial patterns and interannual trends displayed that Guangdong would undergo serious heat waves in the future. The variations of intensity, total intensity, frequency, and the longest duration of heat wave are likely to exceed 5.4°C per event, 24°C, 25 days, and 4 days in the 2080s under RCP8.5, respectively. Higher variation of those would concentrate in eastern and southwestern Guangdong. It also presented that severe heat waves with stronger intensity, higher frequency, and longer duration would have significant increasing tendencies over all Guangdong, which are expected to increase at a rate of 0.14, 0.83, and 0.21% per year under RCP8.5, respectively. Over 60% of Guangdong would suffer the moderate variation of heat waves to the end of this century under RCP8.5. The findings can provide decision makers with useful information to help mitigate the potential impacts of heat waves on pivotal regions as well as ecosystems that are sensitive to extreme temperature.


2020 ◽  
Vol 10 (3) ◽  
pp. 1149 ◽  
Author(s):  
Alfredo Rocha ◽  
Susana C. Pereira ◽  
Carolina Viceto ◽  
Rui Silva ◽  
Jorge Neto ◽  
...  

Heat waves are large-scale atmospheric phenomena that may cause heat stress in ecosystems and socio-economic activities. In cities, morbidity and mortality may increase during a heat wave, overloading health and emergency services. In the face of climate change and associated warming, cities need to adapt and mitigate the effects of heat waves. This study suggests a new method to evaluate heat waves’ impacts on cities by considering some aspects of heat waves that are not usually considered in other similar studies. The method devises heat wave quantities that are easy to calculate; it is relevant to assessing their impacts and permits the development of adaptation measures. This study applies the suggested method to quantify various aspects of heat waves in Lisbon for future climate projections considering future mid-term (2046–2065) and long-term (2081–2100) climates under the RCP8.5 greenhouse emission scenario. This is achieved through the analysis of various regional climate simulations performed with the WRF model and an ensemble of EURO-CORDEX models. This allows an estimation of uncertainty and confidence of the projections. To evaluate the climate change properties of heat waves, statistics for future climates are compared to those for a reference recent climate. Simulated temperatures are first bias corrected to minimize the model systematic errors relative to observations. The temperature for mid and long-term futures is expected to increase relative to the present by 1.6 °C and 3.6 °C, respectively, with late summer months registering the highest increases. The number of heat wave days per year will increase on average from 10, in the present climate, to 38 and 63 in mid and long-term climates, respectively. Heat wave duration, intensity, average maximum temperature, and accumulated temperature during a heat wave will also increase. Heat waves account for an annual average of accumulated temperature of 358 °C·day in the present climate, while in the mid and long-term, future climates account for 1270 °C·day and 2078 °C·day, respectively. The largest increases are expected to occur from July to October. Extreme intensity and long-duration heat waves with an average maximum temperature of more than 40 °C are expected to occur in the future climates.


2020 ◽  
Author(s):  
Ondřej Lhotka ◽  
Jan Kyselý

<p>Europe experienced several major heat waves in the recent summers, substantially affecting human society and environment. Heat waves are generally related to joint effect of perturbed atmospheric circulation and anomalies in surface energy budget, and they are often linked to hydrological preconditioning. Contributions of these driving mechanisms, however, vary across European climatic zones. Climate models struggle to simulate the spatial differences properly, ultimately leading to large uncertainties in future heat waves’ characteristics. As the first step towards identifying spatial patterns of differences between driving mechanisms of temperature extremes, a pan-European database of observed major heat waves has been created. Heat waves are studied using the E-OBS 20.0e dataset in 0.1° horizontal grid spacing, which is analogous to that used in the ERA5 reanalysis and CORDEX regional climate models. Magnitude of heat waves is defined with respect to local daily maximum temperature (Tmax) variance, using multiples of standard deviation of Tmax summed across individual events. For each heat wave, circulation conditions and surface energy fluxes are analysed using the ERA5 reanalysis, in order to study their links to the heat wave magnitude and geographical location. In the next step, these findings are used for analyzing spatial patterns of heat wave mechanisms and as a source of reference data for evaluation of relevant processes in climate models.</p>


2020 ◽  
Author(s):  
Miyeong Jo ◽  
Jiyeun Ye ◽  
Jihye Yun ◽  
Jaeeun You ◽  
Juyeong Kim ◽  
...  

<p>The frequency of extreme weather phenomena such as heat wave and cold wave has increased recently, and the intensity of weather has been strengthened, resulting in human and physical damage. The Republic of Korea has been working to reduce damage since 2018 by including heat and cold waves in natural disasters. The Korea Meteorological Administration (KMA) also provides impact-based forecasts, which requires research that suits local characteristics. In this study, weather observation data related to the summer heat wave in Busan, Ulsan and South Gyeongsang Province was analyzed to determine the weather conditions for the heat wave. In addition, in relation to the heat wave impact-based forecast that was provided regularly in 2019, the heat threshold was applied by comparing the current status of the heat-related patients with the maximum temperature, the number of consecutive days of the heat wave and the current status of the heat-related patients. The impacts of heat waves in different fields were analyzed, including livestock waste, fisheries food damage, and heat damage by crops. The cold wave also analyzed the number of days of cold wave in Busan, Ulsan, and South Gyeongsang Province by comparing the lowest temperature with the current status of cold-related patients. The impacts of cold weather conditions such as wind direction, wind speed and the number of consecutive days of the cold wave were also analyzed. Further, for regular provision of cold wave impact-based forecast to be implemented in 2020, the impacts of each cold wave vulnerable areas suitable for Busan, Ulsan, and South Gyeongsang Province were analyzed and referred to when applying cold wave thresholds.</p>


Sign in / Sign up

Export Citation Format

Share Document