scholarly journals Multidrug resistant bacteria isolated from septic arthritis in horses

2017 ◽  
Vol 37 (4) ◽  
pp. 325-330 ◽  
Author(s):  
Rodrigo G. Motta ◽  
Lorrayne S.A. Martins ◽  
Igor G. Motta ◽  
Simony T. Guerra ◽  
Carolina L. de Paula ◽  
...  

ABSTRACT: Septic arthritis is a debilitating joint infectious disease of equines that requires early diagnosis and immediate therapeutic intervention to prevent degenerative effects on the articular cartilage, as well as loss of athletic ability and work performance of the animals. Few studies have investigated the etiological complexity of this disease, as well as multidrug resistance of isolates. In this study, 60 horses with arthritis had synovial fluid samples aseptically collected, and tested by microbiological culture and in vitro susceptibility test (disk diffusion) using nine antimicrobials belonging to six different pharmacological groups. Bacteria were isolated in 45 (75.0%) samples, as follows: Streptococcus equi subsp. equi (11=18.3%), Escherichia coli (9=15.0%), Staphylococcus aureus (6=10.0%), Streptococcus equi subsp. zooepidemicus (5=8.3%), Staphylococcus intermedius (2=3.3%), Proteus vulgaris (2=3.3%), Trueperella pyogenes (2=3.3%), Pseudomonas aeruginosa (2=3.3%), Klebsiella pneumoniae (1=1.7%), Rhodococcus equi (1=1.7%), Staphylococcus epidermidis (1=1.7%), Klebsiella oxytoca (1=1.7%), Nocardia asteroides (1=1.7%), and Enterobacter cloacae (1=1.7%). Ceftiofur was the most effective drug (>70% efficacy) against the pathogens in the disk diffusion test. In contrast, high resistance rate (>70% resistance) was observed to penicillin (42.2%), enrofloxacin (33.3%), and amikacin (31.2%). Eleven (24.4%) isolates were resistant to three or more different pharmacological groups and were considered multidrug resistant strains. The present study emphasizes the etiological complexity of equine septic arthritis, and highlights the need to institute treatment based on the in vitro susceptibility pattern, due to the multidrug resistance of isolates. According to the available literature, this is the first report in Brazil on the investigation of the etiology. of the septic arthritis in a great number of horses associated with multidrug resistance of the isolates.

Author(s):  
Roshni Agarwal ◽  
Vaibhav Agarwal ◽  
Anjali Tewari ◽  
Parwati Upadhyay

Background: Every time an antibiotic is used, whether appropriately or not, the probability of the development and spread of antibiotic resistant bacteria is increased. Thus, multidrug resistant bacteria particularly ESBL (Extended spectrum β­lactamase), Amp C and carbapenemases producing gram negative bacilli have emerged as a major health problem all over the world. Considering new treatment options as a carbapenems sparing and resistance prevention modality, this study was aimed to know the in vitro susceptibility pattern of Cefepime/Tazobactam (CPM/TZ) in comparison to other β-Lactam/ β-Lactamase inhibitors (BL/BLI) and carbapenems against GNB.Methods: A prospective study was conducted on all clinical samples received for a period of about 1 year. Identification and susceptibility of all isolates was done by Vitek 2 Compact system. Susceptibility of CPM/ TZ was done by disc diffusion method on the basis of CLSI guidelines. Both fermenters (E. coli and Klebsiella pneumoniae) and non-fermenters (Acintobacter baumanii and Pseudomonas aeruginosa) were included in the study.Results: Out of 550 GNB isolates the most common was E. coli (61.8%), Acintobacter baumanii (16%), Klebsiella pneumoniae (14.9%) and Pseudomonas aeruginosa (7.3%). Cefepime/tazobactam had a much higher susceptibility of 68% compared to cefepime (28%). Among the BL/BLI combinations tested cefepime/tazobactam (68%) showed the maximum percentage of susceptibility followed by cefoperazone/sulbactam (61.5%) and piperacillin/tazobactam (57.6%). Amongst all GNB isolates cefepime/tazobactam (68%) sensitivity was very much comparable to imipenem (71.8%) and meropenem (69.6%).Conclusions: CPM/TZ exhibited the best in vitro activity in comparison to the other BL/BLI. This new combination of cefepime/tazobactam appears to be a promising alternative therapeutic option to carbapenems. Clinical studies are needed to confirm this in vitro study result.


2014 ◽  
Vol 59 (2) ◽  
pp. 1329-1333 ◽  
Author(s):  
Berthony Deslouches ◽  
Jonathan D. Steckbeck ◽  
Jodi K. Craigo ◽  
Yohei Doi ◽  
Jane L. Burns ◽  
...  

ABSTRACTMultidrug resistance constitutes a threat to the medical achievements of the last 50 years. In this study, we demonstrated the abilities of twode novoengineered cationic antibiotic peptides (eCAPs), WLBU2 and WR12, to overcome resistance from 142 clinical isolates representing the most common multidrug-resistant (MDR) pathogens and to display a lower propensity to select for resistant bacteriain vitrocompared to that with colistin and LL37. The results warrant an exploration of eCAPs for use in clinical settings.


2018 ◽  
Vol 84 (0) ◽  
Author(s):  
Paulo Francisco Domingues ◽  
Simony Trevizan Guerra ◽  
Carolina Lechinski de Paula ◽  
Ana Carolina Alves ◽  
Carmen Alicia Daza Bolanos ◽  
...  

ABSTRACT: Bovine dermatophilosis is a dermatitis characterized by typical focal or localized lesions with “paintbrush” aspect and occasionally as disseminated cutaneous disease. We report the case of a one-year-old Nelore female with history of chronic cutaneous disseminated lesions that appeared immediately after a rainfall period. Serous to purulent exudates, hair with tufted appearance, hyperkeratotic, non-pruritic, hardened, yellowish to brown, and coalescent crusty lesions were observed distributed all over its body. Removal of the crusts revealed ulcerated or hemorrhagic areas, with irregular elevated crusts like “paintbrush”. Microbiological diagnosis enabled the identification of a microorganism, the Dermatophilus congolensis. Despite disseminated and chronic lesions, we obtained a successful therapy with parenteral therapy using long-acting tetracycline based on modified in vitro disk diffusion test. The present report highlights success therapy in uncommon generalized bovine dermatophilosis with selection of first-choice drugs based on modified in vitro susceptibility test, and need of responsible use of antimicrobials in livestock.


2020 ◽  
Vol 15 (3) ◽  
pp. 193-206
Author(s):  
Brognara Lorenzo ◽  
Salmaso Luca ◽  
Mazzotti Antonio ◽  
Di M. Alberto ◽  
Faldini Cesare ◽  
...  

Background: Chronic wounds are commonly associated with polymicrobial biofilm infections. In the last years, the extensive use of antibiotics has generated several antibiotic-resistant variants. To overcome this issue, alternative natural treatments have been proposed, including the use of microorganisms like probiotics. The aim of this manuscript was to review current literature concerning the application of probiotics for the treatment of infected chronic wounds. Methods: Relevant articles were searched in the Medline database using PubMed and Scholar, using the keywords “probiotics” and “wound” and “injuries”, “probiotics” and “wound” and “ulcer”, “biofilm” and “probiotics” and “wound”, “biofilm” and “ulcer” and “probiotics”, “biofilm” and “ulcer” and “probiotics”, “probiotics” and “wound”. Results: The research initially included 253 articles. After removal of duplicate studies, and selection according to specific inclusion and exclusion criteria, 19 research articles were included and reviewed, accounting for 12 in vitro, 8 in vivo studies and 2 human studies (three articles dealing with animal experiments included also in vitro testing). Most of the published studies about the effects of probiotics for the treatment of infected chronic wounds reported a partial inhibition of microbial growth, biofilm formation and quorum sensing. Discussion: The application of probiotics represents an intriguing option in the treatment of infected chronic wounds with multidrug-resistant bacteria; however, current results are difficult to compare due to the heterogeneity in methodology, laboratory techniques, and applied clinical protocols. Lactobacillus plantarum currently represents the most studied strain, showing a positive application in burns compared to guideline treatments, and an additional mean in chronic wound infections. Conclusions: Although preliminary evidence supports the use of specific strains of probiotics in certain clinical settings such as infected chronic wounds, large, long-term clinical trials are still lacking, and further research is needed.


2020 ◽  
Vol 9 (1) ◽  
pp. 416-428 ◽  
Author(s):  
Raghad R. Alzahrani ◽  
Manal M. Alkhulaifi ◽  
Nouf M. Al-Enazi

AbstractThe adaptive nature of algae results in producing unique chemical components that are gaining attention due to their efficiency in many fields and abundance. In this study, we screened the phytochemicals from the brown alga Hydroclathrus clathratus and tested its ability to produce silver nanoparticles (AgNPs) extracellularly for the first time. Lastly, we investigated its biological activity against a variety of bacteria. The biosynthesized nanoparticles were characterized by UV-visible spectroscopy, Fourier-transform infrared spectroscopy, dynamic light scattering, transmission electron microscopy, and energy-dispersive spectroscopy. The biological efficacy of AgNPs was tested against eighteen different bacteria, including seven multidrug-resistant bacteria. Phytochemical screening of the alga revealed the presence of saturated and unsaturated fatty acids, sugars, carboxylic acid derivatives, triterpenoids, steroids, and other components. Formed AgNPs were stable and ranged in size between 7 and 83 nm and presented a variety of shapes. Acinetobacter baumannii, Staphylococcus aureus, Methicillin-resistant S. aureus (MRSA), and MDR A. baumannii were the most affected among the bacteria. The biofilm formation and development assay presented a noteworthy activity against MRSA, with an inhibition percentage of 99%. Acknowledging the future of nano-antibiotics encourages scientists to explore and enhance their potency, notably if they were obtained using green, rapid, and efficient methods.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 751
Author(s):  
Marwa Reda Bakkar ◽  
Ahmed Hassan Ibrahim Faraag ◽  
Elham R. S. Soliman ◽  
Manar S. Fouda ◽  
Amir Mahfouz Mokhtar Sarguos ◽  
...  

COVID-19 is a pandemic disease caused by the SARS-CoV-2, which continues to cause global health and economic problems since emerging in China in late 2019. Until now, there are no standard antiviral treatments. Thus, several strategies were adopted to minimize virus transmission, such as social distancing, face covering protection and hand hygiene. Rhamnolipids are glycolipids produced formally by Pseudomonas aeruginosa and as biosurfactants, they were shown to have broad antimicrobial activity. In this study, we investigated the antimicrobial activity of rhamnolipids against selected multidrug resistant bacteria and SARS-CoV-2. Rhamnolipids were produced by growing Pseudomonas aeruginosa strain LeS3 in a new medium formulated from chicken carcass soup. The isolated rhamnolipids were characterized for their molecular composition, formulated into nano-micelles, and the antibacterial activity of the nano-micelles was demonstrated in vitro against both Gram-negative and Gram-positive drug resistant bacteria. In silico studies docking rhamnolipids to structural and non-structural proteins of SARS-CoV-2 was also performed. We demonstrated the efficient and specific interaction of rhamnolipids with the active sites of these proteins. Additionally, the computational studies suggested that rhamnolipids have membrane permeability activity. Thus, the obtained results indicate that SARS-CoV-2 could be another target of rhamnolipids and could find utility in the fight against COVID-19, a future perspective to be considered.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 877
Author(s):  
Ana Mafalda Pinto ◽  
Alberta Faustino ◽  
Lorenzo M. Pastrana ◽  
Manuel Bañobre-López ◽  
Sanna Sillankorva

Pseudomonas aeruginosa is responsible for nosocomial and chronic infections in healthcare settings. The major challenge in treating P. aeruginosa-related diseases is its remarkable capacity for antibiotic resistance development. Bacteriophage (phage) therapy is regarded as a possible alternative that has, for years, attracted attention for fighting multidrug-resistant infections. In this work, we characterized five phages showing different lytic spectrums towards clinical isolates. Two of these phages were isolated from the Russian Microgen Sextaphage formulation and belong to the Phikmvviruses, while three Pbunaviruses were isolated from sewage. Different phage formulations for the treatment of P. aeruginosa PAO1 resulted in diversified time–kill outcomes. The best result was obtained with a formulation with all phages, prompting a lower frequency of resistant variants and considerable alterations in cell motility, resulting in a loss of 73.7% in swimming motility and a 79% change in swarming motility. These alterations diminished the virulence of the phage-resisting phenotypes but promoted their growth since most became insensitive to a single or even all phages. However, not all combinations drove to enhanced cell killings due to the competition and loss of receptors. This study highlights that more caution is needed when developing cocktail formulations to maximize phage therapy efficacy. Selecting phages for formulations should consider the emergence of phage-resistant bacteria and whether the formulations are intended for short-term or extended antibacterial application.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kaitlin S. Witherell ◽  
Jason Price ◽  
Ashok D. Bandaranayake ◽  
James Olson ◽  
Douglas R. Call

AbstractMultidrug-resistant bacteria are a growing global concern, and with increasingly prevalent resistance to last line antibiotics such as colistin, it is imperative that alternative treatment options are identified. Herein we investigated the mechanism of action of a novel antimicrobial peptide (CDP-B11) and its effectiveness against multidrug-resistant bacteria including Escherichia coli #0346, which harbors multiple antibiotic-resistance genes, including mobilized colistin resistance gene (mcr-1). Bacterial membrane potential and membrane integrity assays, measured by flow cytometry, were used to test membrane disruption. Bacterial growth inhibition assays and time to kill assays measured the effectiveness of CDP-B11 alone and in combination with colistin against E. coli #0346 and other bacteria. Hemolysis assays were used to quantify the hemolytic effects of CDP-B11 alone and in combination with colistin. Findings show CDP-B11 disrupts the outer membrane of E. coli #0346. CDP-B11 with colistin inhibits the growth of E. coli #0346 at ≥ 10× lower colistin concentrations compared to colistin alone in Mueller–Hinton media and M9 media. Growth is significantly inhibited in other clinically relevant strains, such as Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae. In rich media and minimal media, the drug combination kills bacteria at a lower colistin concentration (1.25 μg/mL) compared to colistin alone (2.5 μg/mL). In minimal media, the combination is bactericidal with killing accelerated by up to 2 h compared to colistin alone. Importantly, no significant red blood hemolysis is evident for CDP-B11 alone or in combination with colistin. The characteristics of CDP-B11 presented here indicate that it can be used as a potential monotherapy or as combination therapy with colistin for the treatment of multidrug-resistant infections, including colistin-resistant infections.


Sign in / Sign up

Export Citation Format

Share Document