scholarly journals Genetic variability in natural populations of Zeyheria montana mart. from the Brazilian Cerrado

2007 ◽  
Vol 64 (4) ◽  
pp. 409-415 ◽  
Author(s):  
Bianca Waléria Bertoni ◽  
Spartaco Astolfi Filho ◽  
Ernani Ronie Martins ◽  
Carlos Ferreira Damião Filho ◽  
Suzelei de Castro França ◽  
...  

Zeyheria montana, an endemic species of the Bignoniaceae family from the Brazilian Cerrado's known for its anti-cancer properties, is widely used as imuno stimulant in the popular medicine and its therapeutic activity must be validated by scientific data. The objective of this work was to evaluate the genetic variability of eight plant populations collected within the state of São Paulo, Brazil, via Random Amplification of Polymorphic DNA (RAPD) used as molecular markers. After an optimized protocol for the amplification reaction, nine selected primers generated 105 reproducible bands, indicating up to 60% polymorphism. Analysis of molecular variance (AMOVA) revealed higher genetic variation within populations (84.03%) than among populations (15.97%). The variation values estimated by phiST (0.160) indicated moderate to high inter population structuration. Levels of similarity inter plants with genetic and geographical distances, estimated by the unweighted pair-group method analysis (UPGMA) clustering and non-metric multidimensional scaling (NMDS) ordination methods and by the Mantel test (-0.2345 p = 0.118) denoted that the structure found follows the island model, which assumes that a single population of infinite size may have initiated the existing populations of Zeyheria montana, with no spatial position correlation. Based on the obtained data, a germplasm bank from individuals representing the species variability was established. Furthermore the information here reported can be of importance to develop strategies for the conservation of Z. montana.

2014 ◽  
Vol 139 (5) ◽  
pp. 547-552 ◽  
Author(s):  
Karen R. Harris-Shultz ◽  
Susana Milla-Lewis ◽  
Aaron J. Patton ◽  
Kevin Kenworthy ◽  
Ambika Chandra ◽  
...  

Zoysiagrass (Zoysia sp.) is used as a warm-season turfgrass for lawns, parks, and golf courses in the warm, humid and transitional climatic regions of the United States. Zoysiagrass is an allotetraploid species (2n = 4x = 40) and some cultivars are known to easily self- and cross-pollinate. Previous studies showed that genetic variability in the clonal cultivars Emerald and Diamond was likely the result of contamination (seed production or mechanical transfer) or mislabeling. To determine the extent of genetic variability of vegetatively propagated zoysiagrass cultivars, samples were collected from six commercially available zoysiagrass cultivars (Diamond, Emerald, Empire, JaMur, Meyer, Zeon) from five states (Arkansas, Florida, Georgia, North Carolina, Texas). Two of the newest cultivar releases (Geo and Atlantic) were to serve as outgroups. Where available, one sample from university research plots and two samples from sod farms were collected for each cultivar per state. Forty zoysiagrass simple sequence repeat (SSR) markers and flow cytometry were used to compare genetic and ploidy variation of each collected sample to a reference sample. Seventy-five samples were genotyped and an unweighted pair group method with arithmetic mean clustering revealed four groups. Group I (Z. japonica) included samples of ‘Meyer’ and Empire11 (‘Empire’ sample at location #11), Group II (Z. japonica × Z. pacifica) included samples of ‘Emerald’ and ‘Geo’, Group III (Z. matrella) included samples of ‘Diamond’ and ‘Zeon’, and Group IV (Z. japonica) consisted of samples from ‘Empire’, ‘JaMur’, ‘Atlantic’, and Meyer3 (‘Meyer’ at sample location #3). Samples of ‘Empire’, ‘Atlantic’, and ‘JaMur’ were indistinguishable with the markers used. Four samples were found to have alleles different from the respective reference cultivar, including two samples of ‘Meyer’, one sample of ‘Empire’, and one sample of ‘Emerald’. Three of these samples were from Texas and one of these samples was from Florida. Three of the four samples that were different from the reference cultivar were university samples. In addition, one sample, Empire11, was found to be an octoploid (2n = 8x = 80). For those samples that had a fingerprint different from the reference cultivar, contamination, selfing, and/or hybridization with other zoysiagrasses may have occurred.


2019 ◽  
Vol 47 (3) ◽  
pp. 947-953
Author(s):  
Izabela SZUĆKO ◽  
Anna MĄDRACH

The increasing use of triticale (× Triticosecale Wittmack) indicates that its position on the seed market is constantly strengthening; therefore, the research on its genetic variability is necessary to improve breeding process of new cultivars. The aim of the study was to assess the possibility of using the ITAP-PCR technique to analyse the genetic similarity of nine cultivars of winter triticale cultivated in Poland. Primers designed on the basis of 6 DNA transposon sequences commonly found in cereal plant genomes were used for the study. The average polymorphism rate in the genotypes used in the study was determined as 95.24%; in total, 75 bands were obtained, of which 73 were polymorphic. The PIC value ranged between 0.27 and 0.44, and was highest for the Hamlet primer. The lowest PIC value was observed for the Mutator primer. The average DI value was 0.34, MI - 4.08, AEI - 12.17 and IPI - 4.40. SI ranged from 36.7% to 1.7%. A dendrogram was created according to the unweighted pair group method with arithmetic mean (UPGMA), which in terms of genetic similarity divided the analysed winter triticale cultivars into two main similarity groups.We confirmed that ITAP technique of transposon-based marker is efficient and fast method to detect genetic variability between different winter triticale cultivars. In addition, the presence of analyzed transposon families in hexaploid triticale has not been studied earlier.


2010 ◽  
Vol 100 (7) ◽  
pp. 698-707 ◽  
Author(s):  
Sridhar Jarugula ◽  
Olufemi J. Alabi ◽  
Robert R. Martin ◽  
Rayapati A. Naidu

Genetic variability of field populations of Grapevine leafroll-associated virus 2 (GLRaV-2) in Pacific Northwest (PNW) vineyards was characterized by sequencing the entire coat protein (CP) and a portion of the heat-shock protein-70 homolog (HSP70h) genes. Phylogenetic analysis of CP and HSP70h nucleotide sequences obtained in this study and corresponding sequences from GenBank revealed segregation of GLRaV-2 isolates into six lineages with virus isolates from PNW distributed in ‘PN’, ‘H4’, and ‘RG’ lineages. An estimation of the ratio of nonsynonymous substitutions per nonsynonymous site to synonymous substitutions per synonymous site indicated that different selection pressures may be acting on the two genomic regions encoding proteins with distinct functions. Multiple alignments of CP amino acid sequences showed lineage-specific differences. Enzyme-linked immunosorbent assay results indicated that GLRaV-2-specific antibodies from a commercial source are unable to reliably detect GLRaV-2 isolates in the RG lineage, thereby limiting antibody-based diagnosis of all GLRaV-2 isolates currently found in PNW vineyards. A protocol based on reverse-transcription polymerase chain reaction and restriction fragment length polymorphism analysis was developed for differentiating GLRaV-2 isolates belonging to the three lineages present in the region. The taxonomic status of GLRaV-2 is discussed in light of the current knowledge of global genetic diversity of the virus.


1996 ◽  
Vol 26 (8) ◽  
pp. 1454-1462 ◽  
Author(s):  
Naoki Tani ◽  
Nobuhiro Tomaru ◽  
Masayuki Araki ◽  
Kihachiro Ohba

Japanese stone pine (Pinuspumila Regel) is a dominant species characteristic of alpine zones of high mountains. Eighteen natural populations of P. pumila were studied in an effort to determine the extent and distribution of genetic diversity. The extent of genetic diversity within this species was high (HT = 0.271), and the genetic differentiation among populations was also high (GST = 0.170) compared with those of other conifers. In previous studies of P. pumila in Russia, the genetic variation within the species was also high, but the genetic differentiation among populations was low. We infer that this difference originates from differences in geographic distribution and ecological differences between the two countries. The genetic variation within each population tended, as a whole, to be smaller within marginal southern populations than within northern populations. Genetic relationships among populations reflect the geographic locations, as shown by unweighted pair-group method with arithmetic means and neighbor-joining phylogenetic trees.


2016 ◽  
Vol 34 (3) ◽  
pp. 475-484 ◽  
Author(s):  
A.R. SCHIAVETTO ◽  
D. PERECIN ◽  
L.R. PINTO ◽  
C.A.M. AZANIA ◽  
F.S. ZERA ◽  
...  

ABSTRACT The hypothesis assumed was the existence of biotypes within populations, which has been the cause of difficulties in itchgrass control by farmers. For that, the genetic variability of three populations of Rottboellia cochinchinensis in sugarcane fields in the state of São Paulo was investigated by using the Amplified Fragment Length Polymorphism (AFLP) technique. Six primers were used to obtain molecular characterization data. AFLP gels were analyzed based on marker presence (1) and absence (0). Using NTSYs (Numerical Taxonomy and Multivariate Analysis System) software, the genetic similarity was calculated by the Jaccard coefficient and, from that, a dendrogram was built through the UPGMA (Unweighted Pair Group Method Arithmetic averages) method, besides determining the isopolymorphic marks. The average genetic similarities seen in the region was 0.742 for Igarapava, 0.793 for Mococa and 0.808 for Piracicaba. Between regions it was 0.730 (Igarapava vs Mococa), 0.735 (Mococa vs Piracicaba) and 0.694 (Igarapava vs Piracicaba). In line with the dendrogram, it is possible to detect the formation of two groups, one with 8 plants from Igarapava and Mococa and the other with 21 plants from Igarapava, Mococa and Piracicaba, as well as the presence of 1 discriminant individual from Piracicaba. It can be concluded that the genetic similarity among itchgrass populations from the state of São Paulo was high (72%), which denotes that the difficulties in chemical management are not only due to different biotypes but also due to other characteristics linked to tolerance of the species to herbicides. However, biotype existence cannot be discarded because of the polymorphic marks generating 22% average genetic variability.


Forests ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 278 ◽  
Author(s):  
Hong-Ying Guo ◽  
Ze-Liang Wang ◽  
Zhen Huang ◽  
Zhi Chen ◽  
Han-Bo Yang ◽  
...  

Alnus cremastogyne Burk. is a nonleguminous, nitrogen-fixing tree species. It is also the most important endemic species of Alnus Mill. in China, possessing important ecological functions. This study investigated population genetic variation in A. cremastogyne using 175 trees sampled from 14 populations native to Sichuan Province with 25 simple sequence repeat (SSR) markers. Our analysis showed that A. cremastogyne has an average of 5.83 alleles, 3.37 effective alleles, an expected heterozygosity of 0.63, and an observed heterozygosity of 0.739, indicating a relatively high level of genetic diversity. The A. cremastogyne populations in Liangshan Prefecture (Meigu, Mianning) showed the highest level of genetic diversity, whereas the Yanting population had the lowest. Our analysis also showed that the average genetic differentiation of 14 A. cremastogyne populations was 0.021. Analysis of molecular variance (AMOVA) revealed that 97% of the variation existed within populations; only 3% was among populations. Unweighted pair-group method with arithmetic means (UPGMA) clustering and genetic structure analysis showed that the 14 A. cremastogyne populations could be clearly divided into three clusters: Liangshan Prefecture population, Ganzi Prefecture population, the other population in the mountain area around the Sichuan Basin and central Sichuan hill area, indicating some geographical distribution. Further analysis using the Mantel test showed that this geographical distribution was significantly correlated with elevation.


Genetika ◽  
2021 ◽  
Vol 53 (1) ◽  
pp. 363-378
Author(s):  
Juan Yin ◽  
Majid Khayatnezhad ◽  
Abdul Shakoor

Genetic diversity studies are essential to understand the conservation and management of plant resources in any environment. No detailed Random Amplified Polymorphic DNA (RAPD) studies were conducted to study Geranium genetic diversity. Therefore, we collected and analyzed thirteen species from nine provinces. Overall, one hundred and twenty-five plant specimens were collected. Our aims were 1) to assess genetic diversity among Geranium species 2) is there a correlation between species genetic and geographical distance? 3) Genetic structure of populations and taxa. We showed significant differences in quantitative morphological characters in plant species. Unweighted pair group method with arithmetic mean and multidimensional scaling divided Geranium species into two groups. G. sylvaticum depicted unbiased expected heterozygosity (UHe) in the range of 0.11. Shannon information was high (0.38) in G. columbinum. G. sylvaticum showed the lowest value, 0.14. The observed number of alleles (Na) ranged from 0.25 to 0.55 in G. persicum and G. tuberosum. The effective number of alleles (Ne) was in the range of 1.020-1.430 for G. tuberosum and G. collinum. Gene flow (Nm) was relatively low (0.33) in Geranium. The Mantel test showed correlation (r = 0.27, p=0.0002) between genetic and geographical distances. We reported high genetic diversity, which clearly shows the Geranium species can adapt to changing environments since high genetic diversity is linked to species adaptability. Present results highlighted the utility of RAPD markers and morphometry methods to investigate genetic diversity in Geranium species.


2015 ◽  
Vol 9 (1) ◽  
pp. 30-36
Author(s):  
Shikder Saiful Islam ◽  
Md. Saifuddin Shah ◽  
Foyez Ibn Shams ◽  
Md. Rayhan Ali ◽  
Md. Lifat Rahi

The level of genetic variation determines the genetic status and provides the raw material for selective improvement of a stock. Randomly amplified polymorphic DNA (RAPD) technique was used to assess the genetic variability of 7 different natural (2) and hatchery (5) populations of Indian Major Carp, Labeo rohita (Rohu) in Bangladsh. In total, 140 fish samples were collected (20 from each of the populations). Genomic DNA was extracted from the muscle tissue, and 5 different oligonucleotide primers were used which revealed 80% polymorphic DNA bands. The polymorphic loci proportions were 0.71, 0.75, 0.75, 0.85, 0.84, 0.86 and 0.89 for Ma-Fatema hatchery, Chowdhuri hatchery, Niribili hatchery, Sonali hatchery, Kapotakha hatchery, the Halda river and the Baluhor Baor populations respectively. The pair-wise population differentiation (FST) values indicated a high level of genetic variation between different populations. The Unweighted Pair Group Method of Arithmetic Mean (UPGMA) dendogram based on Nei’s genetic distances also revealed high level of inter-population genetic variation among the populations. The populations were segregated into two groups: the Halda River and Baluhar Baor hatchery in one group and Kapotakha, Ma-Fatema, Chowdhuri, Niribili and Sonali hatcheries in another group. Overall, RAPD results clearly indicate the reduced genetic quality of the hatchery seeds.DOI: http://dx.doi.org/10.3126/ijls.v9i1.11923 International Journal of Life Sciences Vol.9(1) 2015 30-36


2019 ◽  
Vol 18 (6) ◽  
pp. 57-65
Author(s):  
Naushad Ali ◽  
Sardar Ali ◽  
Naqib Ullah Khan ◽  
Sohail Ahmad Jan ◽  
Malik Ashiq Rabbani ◽  
...  

A total of 96 indigenous Brassica rapa accessions were collected from different locations of Khyber Pakhtunkhwa, Pakistan. Simple Sequence Repeats (SSR) markers were used to identify the most diverse genotypes among the collected lots. Twenty six (26) different SSR primers were used for (genetic) variability among collected genotypes. These primers were selected from literature based on their previous results. These primers produced 135 scorable bands of which 75 were polymorphic, with an average of 55.5% polymorphic loci, and reflected the broader genetic background of the collected genotypes. An average 2.88 polymorphic bands with an average PIC value of 0.49 was recorded. Unweighted Pair Group Method with Arithmetic Mean (UPGMA) divided all genotypes into three main groups. Group one contained three clusters, while group two and three had four and two clusters each. Based on the UPGMA dendrogram, genotypes collected from Kohat, Bannu, Swat and Haripur showed considerable amount of variation. From the present study, it is concluded that SSR markers can be proved as the best tool for the genetic variability of other local and exotic B. rapa genotypes.


HortScience ◽  
2013 ◽  
Vol 48 (5) ◽  
pp. 520-524 ◽  
Author(s):  
Peter J. Leonard ◽  
Mark H. Brand ◽  
Bryan A. Connolly ◽  
Samuel G. Obae

Aronia Medik., commonly known as chokeberry, is a genus of deciduous, multistemmed, rosaceous shrubs native to eastern North America. Three species of chokeberry are commonly accepted, A. arbutifolia (L.) Pers., red chokeberry, A. melanocarpa (Michx.) Elliott, black chokeberry, and A. prunifolia (Marshall) Rehder, or purple chokeberry. In Europe, a fourth species of human origin is recognized as Aronia mitschurinii A.K.Skvortsov & Maitul. In North America this type of Aronia is described as cultivars of A. melanocarpa, including ‘Viking’, ‘Nero’, and ‘Aron’. This species is characterized by near homogeneity of the population, tetraploidy, and a distinct morphology with more robust stems, wider leaf blades, and larger fruits than wild populations of A. melanocarpa. It has been proposed that this genotype originated from Russian pomologist Ivan Michurin’s early 20th century experiments involving Aronia × Sorbus hybridization. In this study we used amplified fragment length polymorphic (AFLP) markers to elucidate the relationships of A. mitschurinii to wild North American Aronia, ×Sorbaronia C.K. Schneid, Sorbus L., and six additional genera from subtribe Pyrinae (Rosaceae). Data from seven primer combinations were interpreted by the NTSYSpc software package into a similarity matrix using Jaccard’s coefficient. Clustering of AFLP similarity data using the unweighted pair group method with arithmetic mean (UPGMA) identified A. mitschurinii as distinct from wild Aronia, grouping it close to ×Sorbaronia fallax C. K. Schneid. and ×Sorbaronia ‘Ivan’s Beauty’. Non-metric multidimensional scaling (nMDS) also demonstrated a relationship between A. mitschurinii, ×Sorbaronia fallax, a ×Sorbaronia × Aronia backcross and compound-leaved Sorbus.


Sign in / Sign up

Export Citation Format

Share Document