scholarly journals Functionality of cassava genotypes for waxy starch

Author(s):  
Thaís Barbosa dos Santos ◽  
Carlos Wanderlei Piler de Carvalho ◽  
Luciana Alves de Oliveira ◽  
Eder Jorge de Oliveira ◽  
Flávia Villas-Boas ◽  
...  

Abstract: The objective of this work was to select cassava (Manihot esculenta) genotypes from the Brazilian germplasm bank with a functionality similar to that of waxy starch. A total of 881 genotypes were pre-selected using principal component analysis and hierarchical clustering, and their industrial potential was compared with that of the 7745-5WX waxy cassava and the WX-Maize waxy maize clones, both used as references. Two genotypes stood out: BGM0036 and BGM0083. Samples from these four genotypes were characterized by means of amylose content, scanning electron microscopy, X-ray diffraction, differential scanning calorimetry, paste viscosity, and chain-length distribution of amylopectin. The samples presented A-type crystallinity and no statistical differences (p > 0.05) regarding crystallinity degree (25.3 to 30.0), which shows similar proportions of the amylose/amylopectin fractions. No differences were observed in the microstructure of the cassava starches. Initial gelatinization temperature and amylopectin short chains presented a very strong negative correlation, indicating that a lower proportion of short chains of amylopectin results in a higher initial temperature of gelatinization. BGM0036 and BGM0083 show a low final viscosity, close to that of the waxy maize and cassava starches, being an alternative for use in different foods that require stability during freezing.

2010 ◽  
Vol 37 (5) ◽  
pp. 439 ◽  
Author(s):  
Rosa P. Cuevas ◽  
Venea D. Daygon ◽  
Henry M. Corpuz ◽  
Leilani Nora ◽  
Russell F. Reinke ◽  
...  

Gelatinisation temperature (GT) is one of the key traits measured in programs for breeding rice (Oryza sativa L.). It is commonly estimated by the alkali spreading value (ASV), and less commonly by differential scanning calorimetry (DSC). Using a diverse set of germplasm, it was determined that DSC values associate poorly with ASV, are not correlated with amylose content but correlate with cooking time. Rice varieties are traditionally grouped into three classes of GT based on ASV: high, intermediate and low. However, the distribution of DSC values of 4000 samples shows only two classes: high and low. Large differences in the distributions of chain lengths synthesised by starch synthase IIa (SSIIa) support the two classes as the major grouping, two haplotypes associating with each peak. Each peak of DSC values spanned 10°C. The chain length distribution of the amylopectin molecules from varieties at the upper boundary of each peak showed significantly more chains that span both the crystalline and amorphous lamellae of a cluster than varieties at the other end of that distribution. Improved varieties, classified as intermediate GT by ASV, belong to both of the classes defined by DSC, implying that some enzyme, other than SSIIa is involved in intermediate GT.


2018 ◽  
Author(s):  
Wenzhi Zhou ◽  
Shanshan Zhao ◽  
Shutao He ◽  
Qiuxiang Ma ◽  
Xinlu Lu ◽  
...  

AbstractHigh amylose starch, a desired raw material in the starch industry, can be produced by plants deficient in the function of branching enzymes (BEs). Here we report the production of transgenic cassava plants with starches containing up to 50% amylose due to the constitutive expression of hair-pin dsRNAs targeting the BE1 or BE2 genes. A significant decrease in BE transcripts was confirmed in these transgenic plants by quantitative real-time RT-PCR. The absence of BE1 protein in the BE1-RNAi plant lines (BE1i) and a dramatically lower level of BE2 protein in the BE2-RNAi plant lines (BE2i) were further confirmed by Western blot assays. All transgenic plant lines were grown up in the field, but with reduced biomass production of the above-ground parts and storage roots compared to wild type (WT). Considerably high amylose content in the storage roots of BE2i plant lines was achieved, though not in BE1i plant lines. Storage starch granules of BE1i and BE2i plants had similar morphology as WT, however, the size of BE1i starch granules were bigger than that of WT. Comparisons of amylograms and thermograms of all three sources of storage starches revealed dramatic changes to the pasting properties and a higher melting temperature for BE2i starches. Glucan chain length distribution analysis showed a slight increase in chains of DP>36 in BE1i lines and a dramatic increase in glucan chains between DP 10-20 and DP>40 in BE2i lines, compared to that of WT starch. Furthermore, BE2i starches displayed a B-type X-ray diffraction pattern instead of the A-type pattern found in BE1i and WT starches. Therefore, cassava BE1 and BE2 function differently in storage root starch biosynthesis; silencing of cassava BE1 or BE2 caused various changes to starch physico-chemical properties and amylopectin structure. We also report that remarkably high amylose content in cassava starch has been first obtained in transgenic cassava by silencing of BE2 expression, thus showing a high potential for future industrial utilization.


Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3089
Author(s):  
Linhao Feng ◽  
Chenya Lu ◽  
Yong Yang ◽  
Yan Lu ◽  
Qianfeng Li ◽  
...  

Amylose largely determines rice grain quality profiles. The process of rice amylose biosynthesis is mainly driven by the waxy (Wx) gene, which also affects the diversity of amylose content. The present study assessed the grain quality profiles, starch fine structure, and crystallinity characteristics of the near-isogenic lines Q11(Wxlv), NIL(Wxa), and NIL(Wxb) in the indica rice Q11 background containing different Wx alleles. Q11(Wxlv) rice contained a relatively higher amylose level but very soft gel consistency and low starch viscosity, compared with rice lines carrying Wxa and Wxb. In addition, starch fine structure analysis revealed a remarkable decrease in the relative area ratio of the short amylopectin fraction but an increased amylose fraction in Q11(Wxlv) rice. Chain length distribution analysis showed that Q11(Wxlv) rice contained less amylopectin short chains but more intermediate chains, which decreased the crystallinity and lamellar peak intensity, compared with those of NIL(Wxa) and NIL(Wxb) rice. Additionally, the starches in developing grains showed different accumulation profiles among the three rice lines. Moreover, significant differences in starch gelatinization and retrogradation characteristics were observed between near-isogenic lines, which were caused by variation in starch fine structure. These findings revealed the effects of Wxlv on rice grain quality and the fine structure of starch in indica rice.


2019 ◽  
Author(s):  
Dennis Bücker ◽  
Annika Sickinger ◽  
Julian D. Ruiz Perez ◽  
Manuel Oestringer ◽  
Stefan Mecking ◽  
...  

Synthetic polymers are mixtures of different length chains, and their chain length and chain conformation is often experimentally characterized by ensemble averages. We demonstrate that Double-Electron-Electron-Resonance (DEER) spectroscopy can reveal the chain length distribution, and chain conformation and flexibility of the individual n-mers in oligo-(9,9-dioctylfluorene) from controlled Suzuki-Miyaura Coupling Polymerization (cSMCP). The required spin-labeled chain ends were introduced efficiently via a TEMPO-substituted initiator and chain terminating agent, respectively, with an in situ catalyst system. Individual precise chain length oligomers as reference materials were obtained by a stepwise approach. Chain length distribution, chain conformation and flexibility can also be accessed within poly(fluorene) nanoparticles.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1383
Author(s):  
Jerzy Korol ◽  
Aleksander Hejna ◽  
Klaudiusz Wypiór ◽  
Krzysztof Mijalski ◽  
Ewelina Chmielnicka

The recycling of plastics is currently one of the most significant industrial challenges. Due to the enormous amounts of plastic wastes generated by various industry branches, it is essential to look for potential methods for their utilization. In the presented work, we investigated the recycling potential of wastes originated from the agricultural films recycling line. Their structure and properties were analyzed, and they were modified with 2.5 wt % of commercially available compatibilizers. The mechanical and thermal performance of modified wastes were evaluated by tensile tests, thermogravimetric analysis, and differential scanning calorimetry. It was found that incorporation of such a small amount of modifiers may overcome the drawbacks caused by the presence of impurities. The incorporation of maleic anhydride-grafted compounds enhanced the tensile strength of wastes by 13–25%. The use of more ductile compatibilizers—ethylene-vinyl acetate and paraffin increased the elongation at break by 55–64%. The presence of compatibilizers also reduced the stiffness of materials resulting from the presence of solid particles. It was particularly emphasized for styrene-ethylene-butadiene-styrene and ethylene-vinyl acetate copolymers, which caused up to a 20% drop of Young’s modulus. Such effects may facilitate the further applications of analyzed wastes, e.g., in polymer film production. Thermal performance was only slightly affected by compatibilization. It caused a slight reduction in polyethylene melting temperatures (up to 2.8 °C) and crystallinity degree (up to 16%). For more contaminated materials, the addition of compatibilizers caused a minor reduction in the decomposition onset (up to 6 °C). At the same time, for the waste after three washing cycles, thermal stability was improved. Moreover, depending on the desired properties and application, materials do not have to go through the whole recycling line, simplifying the process, reducing energy and water consumption. The presented results indicate that it is possible to efficiently use the materials, which do not have to undergo the whole recycling process. Despite the presence of impurities, they could be applied in the manufacturing of products which do not require exceptional mechanical performance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Debayan Mondal ◽  
Prudveesh Kantamraju ◽  
Susmita Jha ◽  
Gadge Sushant Sundarrao ◽  
Arpan Bhowmik ◽  
...  

AbstractIndigenous folk rice cultivars often possess remarkable but unrevealed potential in terms of nutritional attributes and biotic stress tolerance. The unique cooking qualities and blissful aroma of many of these landraces make it an attractive low-cost alternative to high priced Basmati rice. Sub-Himalayan Terai region is bestowed with great agrobiodiversity in traditional heirloom rice cultivars. In the present study, ninety-nine folk rice cultivars from these regions were collected, purified and characterized for morphological and yield traits. Based on traditional importance and presence of aroma, thirty-five genotypes were selected and analyzed for genetic diversity using micro-satellite marker system. The genotypes were found to be genetically distinct and of high nutritive value. The resistant starch content, amylose content, glycemic index and antioxidant potential of these genotypes represented wide variability and ‘Kataribhog’, ‘Sadanunia’, ‘Chakhao’ etc. were identified as promising genotypes in terms of different nutritional attributes. These cultivars were screened further for resistance against blast disease in field trials and cultivars like ‘Sadanunia’, ‘T4M-3-5’, ‘Chakhao Sampark’ were found to be highly resistant to the blast disease whereas ‘Kalonunia’, ‘Gobindabhog’, ‘Konkanijoha’ were found to be highly susceptible. Principal Component analysis divided the genotypes in distinct groups for nutritional potential and blast tolerance. The resistant and susceptible genotypes were screened for the presence of the blast resistant pi genes and association analysis was performed with disease tolerance. Finally, a logistic model based on phenotypic traits for prediction of the blast susceptibility of the genotypes is proposed with more than 80% accuracy.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1958
Author(s):  
Jolanta Tomaszewska-Gras ◽  
Mahbuba Islam ◽  
Liliana Grzeca ◽  
Anna Kaczmarek ◽  
Emilia Fornal

The aim of this study was to describe the thermal properties of selected cultivars of flaxseed oil by the use of the differential scanning calorimetry (DSC) technique. The crystallization and melting profiles were analyzed depending on different scanning rates (1, 2, 5 °C/min) as well as oxidative induction time (OIT) isothermally at 120 °C and 140 °C, and oxidation onset temperatures (Ton) at 2 and 5 °C/min were measured. The crystallization was manifested as a single peak, differing for a cooling rate of 1 and 2 °C/min. The melting curves were more complex with differences among the cultivars for a heating rate of 1 and 2 °C/min, while for 5 °C/min, the profiles did not differ, which could be utilized in analytics for profiling in order to assess the authenticity of the flaxseed oil. Moreover, it was observed that flaxseed oil was highly susceptible to thermal oxidation, and its stability decreased with increasing temperature and decreasing heating rate. Significant negative linear correlations were found between unsaturated fatty acid content (C18:2, C18:3 n-3) and DSC parameters (OIT, Ton). Principal component analysis (PCA) also established a strong correlation between total oxidation value (TOTOX), peroxide value (PV) and all DSC parameters of thermo-oxidative stability.


Sign in / Sign up

Export Citation Format

Share Document