scholarly journals Evaluation of the efficiency of the sewage treatment plant from the University of Santa Cruz do Sul (UNISC), RS, Brazil

2012 ◽  
Vol 24 (2) ◽  
pp. 119-126 ◽  
Author(s):  
Adriana Düpont ◽  
Eduardo Alcayaga Lobo

AIM: The main objective was to evaluate the efficiency of the sewage treatment plant (STP) of UNISC, through the ecotoxicological characterization and the analyses of the physical, chemical and microbiological variables from the raw and treated effluent. METHODS: Samples were collected during 2008 and 2009 for performing acute toxicity (Daphnia magna), chronic toxicity (Ceriodaphnia dubia), as well as the determination of environmental variables. RESULTS: The results indicated acute toxicity with an EC(I)50 48 hours average of 64.1 ± 9.9%, characterized as moderately toxic, and an average chronic toxicity CI(I)25 of 8,1 ± 2.6%, characterized as highly toxic. The total phosphorus (3.6 ± 1.4 mg L-1) and the ammonia nitrogen (77.8 ± 22.5 mg L-1) showed high concentration in the treated effluent, highlighting the STP inefficiency and, specially, the large amount of nutrients that the system is introducing into the receiving waterbody, the Lajeado Stream, condition that characterizes a large potential environmental impact known as eutrophication. The treated effluent showed high levels of thermotolerant coliforms, reaching an average of 6.4 × 10(5) ± 8.6 × 10(5) NMP 100 mL-1, corresponding to a potential pollution load of high impact in the receiving waterbody, characterizing therefore a public health problem. CONCLUSIONS: The Lajeado Stream has no supporting capacity for preventing acute and chronic effects on biota.

2008 ◽  
Vol 58 (5) ◽  
pp. 1101-1106
Author(s):  
Pichiah Saravanan ◽  
K. Pakshirajan ◽  
P. K. Saha

An indigenous mixed culture of microorganisms, isolated from a sewage treatment plant, was investigated for its potential to simultaneously degrade phenol and m-cresol during its growth in batch shake flasks. 22 full factorial designs with the two substrates as the factors, at two different levels and two different initial concentration ranges, were employed to carry out the biodegradation experiments. For complete utilisation of phenol and m-cresol, the culture took a minimum duration of 21 hrs at their low concentration of 100 mg/L each, and a maximum duration of 187 hrs at high concentration of 600 mg/L each in the multisubstrate system. The biodegradation results also showed that the presence of phenol in low concentration range (100–300 mg/L did not inhibit m-cresol biodegradation; on the other hand, presence of m-cresol inhibited phenol biodegradation by the culture. Moreover, irrespective of the concentrations used, phenol was degraded preferentially and earlier than m-cresol. During the culture growth, a lag phase was observed above a combined concentration of 500 mg/L i.e., 200 mg/L m-cresol and 300 mg/L of phenol and above). Statistical analysis of the specific growth rate of the culture in the multisubstrate system was also performed in the form of ANOVA and Student ‘t’ test, which gave good interpretation in terms of main and interaction effects of the substrates.


2021 ◽  
Author(s):  
Yanyan Fang

Abstract Microplastics (MPs) have been found in all environment matrices and have become an issue of concern worldwide. In this study, Baiyangdian Lake in Northern China was investigated for the presence of MPs (0.45 µm–5 mm) in sediment and at different water depths. MPs were found at 1,000–20,000 pieces/m3 (average 9,595) in water and at 400–2,200 pieces/kg (average 1,023) in sediment. Since the implementation of pollution abatement measures, visible MPs have been nearly eliminated; the MPs found in this study were mainly in the micrometer range, with no more than 3–5 pieces greater than 1 mm per sample. The main forms of MPs were fibrous and fragmented, and the main components were polyamide, polyethylene, and polypropylene. MPs found in water near a garbage transfer station showed the following abundance of MPs: surface water < middle water < bottom water. The sediment contained a higher amount of MP fragments, indicating that the historical transfer and disposal of garbage was a main source of plastic deposition in this area. There was a high content of fibrous MPs in surface water, while the abundance of fragmented MPs increased with the depth of water. The main sources of MPs in the study area were residential activities, local plastic factories, and the treated effluent from a sewage treatment plant.


2019 ◽  
Vol 15 (1) ◽  
pp. 40-44 ◽  
Author(s):  
Bikram Gautam ◽  
Anjita Rajbhanshi ◽  
Rameshwar Adhikari

Background: Water sources such as lakes, ponds, river etc. have been continuously contaminated by the   micro organisms and chemicals. The former can pose a significant threat to human health. This work aims at detecting the bacterial load before and after the sewage treatment and hence isolating pathogens from the sewage before primary treatment and secondary treated effluent. Methods: Grab sampling (50mL sewage before primary treatment and secondary treated effluent) was performed for 20 days in the Guheswori  sewage treatment plant. The reduction in microbial load was determined through heterotrophic plate count. Pathogens were screened from the effluent obtained from the secondary treatment plant. Results: Bacterial load reduction was found to be about 48.02% on average. The observed bacterial load reduction might have been caused by bacteriophage flocculation and sedimentation. Pathogens isolated from the treated effluent were Escherichia coli, Salmonella Typhi, Enterococcus faecalis, Staphylococcus aureus, Coagulase negative Staphylococcus (CONS), Citrobacter fruendii, Enterobacter aerogenes, Proteus mirabilis, P. vulgaris, Pseudomonas  aeruginosa. Conclusions: It has been found that the sewage treatment plant helps to reduce the bacterial load which is, however, not capable of effluent polishing where all pathogens are killed. 


2004 ◽  
Vol 46 (6) ◽  
pp. 309-313 ◽  
Author(s):  
Luciana Urbano Santos ◽  
Taís Rondello Bonatti ◽  
Romeu Cantusio Neto ◽  
Regina Maura Bueno Franco

Giardia and Cryptosporidium have caused several outbreaks of gastroenteritis in humans associated with drinking water. Contaminated sewage effluents are recognized as a potential source of waterborne protozoa. Due to the lack of studies about the occurrence of these parasites in sewage samples in Brazil, we compared the efficiency of two procedures for concentrating cysts and oocysts in activated sludge samples of one sewage treatment plant. For this, the samples were submitted to i) concentration by the ether clarification procedure (ECP) and to ii) purification by sucrose flotation method (SFM) and aliquots of the pellets were examined by immunofluorescence. Giardia cysts were present in all samples (100.0%; n = 8) when using ECP and kit 1 reagents, while kit 2 resulted in six positive samples (85.7%; n = 7). As for SFM, cysts were detected in 75.0% and 100.0% of these samples (for kit 1 and 2, respectively). Regarding Cryptosporidium, two samples (25.0%; kit 1 and 28.5% for kit 2) were detected positive by using ECP, while for SFM, only one sample (examined by kit 1) was positive (12.5%). The results of the control trial revealed Giardia and Cryptosporidium recovery efficiency rates for ECP of 54.5% and 9.6%, while SFM was 10.5% and 3.2%, respectively. Considering the high concentration detected, a previous evaluation of the activated sludge before its application in agriculture is recommended and with some improvement, ECP would be an appropriate simple technique for protozoa detection in sewage samples.


2014 ◽  
Vol 522-524 ◽  
pp. 854-860
Author(s):  
Qing Tao Zhang ◽  
Zhi Jian Zhang ◽  
Jiong Ma ◽  
Jiao Xiang

The growth performance of duckweed (Spirodela polyrrhiza) and its removal rate of nitrate and phosphorus in sewages taken from sewage treatment plant with different processes were studied. The experiments were conducted in an environmentally controlled growth chamber. Three kinds of sewages were taken from a grit chamber, a sedimentation tank, and the anoxic pond in a sewage treatment plant, respectively. The fourth kind of sewage was mixed using the sedimentation tank sewage and the anoxic pond sewage in a volumetric ratio 1:1. The weight of duckweed biomass were determined with a balance. Wastewater samples taken from the media were analyzed for total nitrogen (TN), ammonium nitrogen (NH4N), total phosphorus (TP), phosphatephosphorus (PO4P) using AA3 Continous Flow Analyzer. The results showed that Spirodela polyrrhiza grew well in sewages taken from grit chamber and sedimentation tank of a sewage treatment plant, whereas a lot of duckweed fronds were dead in the sewage taken from the anoxic pond due to the high TP (higher than 7.9 mg/L) and TN (higher than 51.6 mg/L). The suitable TN concentration for Spirodela polyrrhiza growth should not be higher than 45 mg/L. Compared with the treatments without duckweed, the NH4N concentrations were reduced more than 60% in ST and GC sewages with duckweed due to the NH4N uptake by duckweed. Spirodela polyrrhiza could remove TN efficiently in sewages with relative low concentration TN (less than 20 mg/L), while duckweed could not remove TN effectively in sewages with high concentration TN (higher than 20 mg/L). The TN concentration in GC sewage decreased greatly in the first four days, which probably brought about anaerobic condition, thus P uptake switched to net release of P, which caused the increase of the TP concentration in the GC sewage without duckweed in the last six days. O2 or oxidant should be provided for sewage treatment system using duckweed to ensure that efficient removal of TN and TP meanwhile. The TP and PO4P concentrations in the mixed sewage with duckweed increased far more than those for no-duckweed treatments, which could be related that the dead duckweed released P into the sewage.


2015 ◽  
Vol 737 ◽  
pp. 649-652
Author(s):  
Ming Li ◽  
Shuai Wang ◽  
De Chen Shan ◽  
Li Wei ◽  
Wen Jia Yin

In this study, IC anaerobic reactor was made to deal with the wastewater with high-concentration sulfate, the sludge from sewage treatment plant was put into two cells of IC reactor to domesticate sulfur-reducing bacteria (SRB), artificial water was made to simulate the wastewater with high-concentration SO42−. In order to remove the SO42− efficiently, two stages were designed in this study: sludge domestication stage and concentration strengthening stage. In sludge domestication stage, SRB could grow normally, the removal rate of SO42− was between 34.14% and 36.2%;in concentration strengthening stage, removal rate of SO42− was between 26% and 26.86%,demonstrating that SRB could grow and remove SO42− in such high-concentration SO42−( 38000 mg/L ) wastewater.


Irriga ◽  
2021 ◽  
Vol 1 (4) ◽  
pp. 671-677
Author(s):  
LIBIANE MARINHO BERNARDINO ◽  
PATRÍCIA DA SILVA COSTA ◽  
VERA LÚCIA ANTUNES DE LIMA ◽  
RENER LUCIANO DE SOUZA FERRAZ

POTENCIAL DE REÚSO DE EFLUENTES TRATADOS PARA IRRIGAÇÃO PERIURBANA NO MUNICÍPIO DE GUARABIRA/PB     LIBIANE MARINHO BERNARDINO1; PATRÍCIA DA SILVA COSTA2; VERA LÚCIA ANTUNES DE LIMA3 E RENER LUCIANO DE SOUZA FERRAZ4.   1 Mestranda em Gestão e Regulação em Recursos Hídricos, Unidade Acadêmica de Tecnologia do Desenvolvimento, UFCG, Rua Luiz Grande, s/n, Frei Damião, CEP 58540-000, Sumé, PB, Brasil, [email protected] 2 Doutoranda em Engenharia Agrícola, Unidade Acadêmica de Engenharia Agrícola, UFCG, Rua Aprigio Veloso, 882, Universitário, CEP 58429-900, Campina Grande, PB, Brasil, [email protected] 3 Profa. Doutora em Engenharia Agrícola, Unidade Acadêmica de Engenharia Agrícola, UFCG, Rua Aprigio Veloso, 882, Universitário, CEP 58429-900, Campina Grande, PB, Brasil, [email protected] 4 Prof. Doutor em Engenharia Agrícola, Unidade Acadêmica de Desenvolvimento Sustentável do Semiárido, UFCG, Rua Luiz Grande, s/n, Frei Damião, CEP 58540-000, Sumé, PB, Brasil, [email protected]     1 RESUMO   A água é um recurso finito que se encontra escasso, o que justifica a busca por gestão e inovação de práticas que a preserve. O objetivo da pesquisa é avaliar o potencial de reúso dos efluentes tratados para irrigação periurbana. Foram levantados dados de uma Estação de Tratamento de Esgotos (ETE), localizada no município de Guarabira, PB, e operada pela Companhia de Água e Esgotos do Estado da Paraíba (CAGEPA), durante o período de janeiro a dezembro de 2019. Analisou-se os seguintes parâmetros físico-químicos e bacteriológicos: Potencial Hidrogeniônico (pH), Condutividade Elétrica (CE), Demanda Bioquímica de Oxigênio (DBO), Demanda Química de Oxigênio (DQO), Sólidos Totais (ST), Oxigênio Dissolvido (OD), Fósforo Total, e Coliformes Termotolerantes. Os dados foram submetidos à análise descritiva e expresso em valores mínimos, máximos e médios. Os indicadores foram satisfatórios para irrigação restrita, porém com a necessidade de tratamento complementar para determinados cultivos. O potencial de reúso   dos efluentes tratados na ETE pode beneficiar uma área de 118,7 ha considerando uma demanda de irrigação de 18.000 m³ ha-1 ano-1, o que demonstra ser um recurso sustentável e que precisa ser regulamentado no Brasil.   Palavras-chave: recursos hídricos, resíduos líquidos, tratamento de água, fertirrigação.     BERNARDINO, L. M.; COSTA, P. S.; LIMA, V. L. A.; FERRAZ, L. R. S. REUSE POTENTIAL OF TREATED EFFLUENTS FOR PERIURBAN IRRIGATION IN THE MUNICIPALITY OF GUARABIRA/PB     2 ABSTRACT   Water is at the center of sustainable development and a finite resource that is in short supply, which justifies the search for management and innovation of practices that preserve it. This research aims to evaluate the potential for reuse of treated effluent for periurban irrigation. Data were collected from a Sewage Treatment Plant (STP), located in the municipality of Guarabira, PB, and operated by the Water and Sewage Company of the State of Paraíba (CAGEPA), during the period from January to December 2019, with the analysis of the following physicochemical and bacteriological parameters: Hipogenic Potential (pH), Electrical Conductivity (CE), Biochemical Oxygen Demand (DBO), Chemical Oxygen Demand (DQO), Total Solids (ST), Dissolved Oxygen (OD), Total Phosphorus, and Thermotolerant Coliforms. The data were submitted to the descriptive analysis and expressed as minimum, maximum and average values. The indicators were satisfactory for restricted irrigation, but with the need for complementary treatment for certain crops. The potential for reuse of the effluents treated in the ETE can benefit an area of 118.7 ha considering an irrigation demand of 18,000 m³ ha-1 year-1, which demonstrates to be a sustainable resource that needs to be regulated in Brazil.   Keywords: Water resources, liquid waste, water treatment, fertigation.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Zarimah Mohd Hanafiah ◽  
Wan Hanna Melini Wan Mohtar ◽  
Hassimi Abu Hasan ◽  
Henriette Stokbro Jensen ◽  
Anita Klaus ◽  
...  

Abstract The fluctuation of domestic wastewater characteristic inhibits the current conventional microbial-based treatment. The bioremediation fungi has received attention and reported to be an effective alternative to treat industrial wastewater. Similar efficient performance is envisaged for domestic wastewater whereby assessed performance of fungi for varying carbon-to-nitrogen ratios in domestic wastewater is crucial. Thus, the performance of pre-grown wild-Serbian Ganoderma lucidum mycelial pellets (GLMPs) was evaluated on four different synthetic domestic wastewaters under different conditions of initial pH (pH 4, 5, and 7) and chemical oxygen demand (COD) to nitrogen (COD/N) ratio of 3.6:1, 7.1:1, 14.2:1, and 17.8:1 (C3.6N1, C7.1N1, C14.2N1, and C17.8N1). The COD/N ratios with a constant concentration of ammonia–nitrogen (NH3–N) were chosen on the basis of the urban domestic wastewater characteristics sampled at the inlet basin of a sewage treatment plant (STP). The parameters of pH, COD, and NH3–N were measured periodically during the experiment. The wild-Serbian GLMPs efficiently removed the pollutants from the synthetic sewage. The COD/N ratio of C17.8N1 wastewater had the best COD and NH3–N removal, as compared to the lower COD/N ratio, and the shortest treatment time was obtained in an acidic environment at pH 4. The highest percentage for COD and NH3–N removal achieved was 96.0% and 93.2%, respectively. The results proved that the mycelium of GLMP has high potential in treating domestic wastewater, particularly at high organic content as a naturally sustainable bioremediation system.


2020 ◽  
Vol 165 ◽  
pp. 02026
Author(s):  
Lintang Yu ◽  
Zhongya Tang ◽  
Li Feng ◽  
Junjie Ji

As the raising of environmental protection requirements, the outlet water (tailwater) quality standards of many sewage treatment plants need to be further improved. This paper mainly introduces the advanced treatment of tailwater from sewage treatment plant of vein industrial park by artificial ecological lake. The designed processing amount of this project was 1300 m3/d, the inlet water COD was 30 mg/L, the ammonia nitrogen content was 1.5 mg/L, and the outlet water main index reached the surface water environment quality standard (GB3838-2002) Ⅲ class water quality standard, which had improved the outlet water (tailwater) quality of sewage treatment plants and improved the regional water environment quality. By constructing an artificial landscape lake, the resource utilization of tailwater can be realized.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3194 ◽  
Author(s):  
Paweł Włodarczyk ◽  
Barbara Włodarczyk

Wastewater originating from the yeast industry is characterized by high concentration of pollutants that need to be reduced before the sludge can be applied, for instance, for fertilization of croplands. As a result of the special requirements associated with the characteristics of this production, huge amounts of wastewater are generated. A microbial fuel cell (MFC) forms a device that can apply wastewater as a fuel. MFC is capable of performing two functions at the same time: wastewater treatment and electricity production. The function of MFC is the production of electricity during bacterial digestion (wastewater treatment). This paper analyzes the possibility of applying yeast wastewater to play the function of a MFC (with Ni–Co cathode). The study was conducted on industrial wastewater from a sewage treatment plant in a factory that processes yeast sewage. The Ni–Co alloy was prepared by application of electrochemical method on a mesh electrode. The results demonstrated that the use of MFC coupled with a Ni–Co cathode led to a reduction in chemical oxygen demand (COD) by 90% during a period that was similar to the time taken for reduction in COD in a reactor with aeration. The power obtained in the MFC was 6.1 mW, whereas the volume of energy obtained during the operation of the cell (20 days) was 1.27 Wh. Although these values are small, the study found that this process can offer an additional level of wastewater treatment as a huge amount of sewage is generated in the process. This would provide an initial reduction in COD (and save the energy needed to aerate wastewater) as well as offer the means to generate electricity.


Sign in / Sign up

Export Citation Format

Share Document