scholarly journals Studies on Nitrate Nitrogen Contents in Forage Crops. : 2. Effect of four levels of light intensity and two levels of nitrogen on yields and nitrate natrogen contents of Bahiagrass (Paspalum notatum FLUGGE) and Bermudagrass (Cynodon dactylon PERS.)

1968 ◽  
Vol 37 (1) ◽  
pp. 59-64
Author(s):  
Kaoru EHARA ◽  
Yoshio YAMADA ◽  
Raizaburo UMETSU
2020 ◽  
Vol 98 (Supplement_2) ◽  
pp. 26-26
Author(s):  
Justin C Burt ◽  
Jennifer J Tucker ◽  
Lisa Baxter

Abstract Bermudagrass (Cynodon dactylon) is one of the most common perennial warm-season forage crops grown in the South. While prominent in the region bermudagrass management requires large amounts of fertility and forage quality is moderate at best. Incorporating a legume into bermudagrass pastures could serve as an alternative to the necessary applications of synthetic N, while also improving the nutritive value of the forage base. A two-year grazing evaluation was conducted from May-Sept. 2018 (Y1) and May-Aug. 2019 (Y2) at the University of Georgia Tifton Campus in Tifton, Georgia, to compare concurring production of alfalfa/bermudagrass mixed pastures (BGA) with bermudagrass monoculture pastures with (BGN) or without (BGZ) the application of synthetic nitrogen. The experimental design was a randomized complete block with three treatments and two replications. All paddocks were evaluated pre and post grazing event for herbage availability, botanical composition, forage species competitiveness, and nutritive value. Paddocks (0.8-ha) were rotationally grazed using put and take management with stocker steers (Y1 BW=195.9±22.9 kg; Y2 BW=228.5±30.0 kg), two testers per treatment. Steers were weighed at initiation, conclusion, and on a 28–30 day interval for calculation of ADG and gain/ha. Statistical analysis was conducted using the PROC MIXED procedure of SAS. Despite significant drought in Y2, year did not affect total gain/ha, however treatment did (P = 0.04), such that BGA was highest (383.6±35.1 kg/ha), and BGN and BGZ were not different (261.2±35.1 kg/ha and 239.0±35.1 kg/ha, respectively). This is likely due to the lower stocking density and inclusion of high-quality volunteer annual grasses in BGZ treatments which allowed for selective grazing. These data suggest that rotationally grazing alfalfa/bermudagrass mixtures can result in a higher gain/ha, than bermudagrass pastures that are supplemented with or without synthetic N in the South.


Author(s):  
Maria Theresia Sri Budiastuti ◽  
Djoko Purnomo ◽  
Supriyono Supriyono ◽  
Bambang Pujiasmanto ◽  
Desy Setyaningrum

<p class="Default"><em>Indigofera tinctoria</em> is a legume that is cultivated as a source of natural indigo dyes. As a legume, <em>Indigofera tinctoria</em> is capable of symbiosis with soil microbes. This study evaluates the effects of light intensity and microbial inoculation on root growth and nodulation. The study used a complete randomized block design with a split-plot pattern. Light intensity was the main plot with four levels of light intensity 100%, 50%, 25%, and 10%. Microbial inoculation was a subplot with four levels without inoculation, mycorrhizae inoculation, rhizobium inoculation, and double inoculation with both mycorrhizae and rhizobium. The results obtained show that light intensity and microbial inoculation affected root length, root fresh weight, root biomass, and the number of nodules. 50% light intensity was optimum for root length, while 100% light intensity was optimum for root fresh weight, root biomass, and a number of nodules. Root growth and nodulation were further increased with double inoculation. The combination of light intensity and microbial inoculation affected root biomass and nodulation. The combination of 100% light intensity and double inoculation resulted in the highest root biomass and nodule numbers. Mycorrhizae and rhizobium have a synergistic relationship to nodulation and root growth. Double inoculation with mycorrhizae and rhizobium efficiently increased root biomass and the number of nodules under low or high light intensity.</p>


2018 ◽  
Vol 6 (1) ◽  
pp. 12-16
Author(s):  
Chalinda Koshitha Beneragama ◽  
Ganege Don Kapila Kumara

Drought responses of turf-type Bermuda grass (Cynodon dactylon (L.) Pers.) and Bahia grass (Paspalum notatum Flugge) in relation to their growth, carbon allocation and accumulation of nonstructural carbohydrates were investigated. Seedlings were exposed to a 20 day terminal drought, followed by 20 day recovery with irrigation. Leaf dry matter was lower in water-stressed plants than control plants by the end of drought, but did not differ in roots. For both species, more carbon was allocated towards roots in response to drought. Total nonstructural carbohydrate (TNC) concentration in shoots was increased in drought-stressed plants of both species. However, root TNC concentrations in Bahia grass were decreased after drought. TNC pool sizes also showed a similar variation, hence correlated with TNC concentrations. Bahia grass maintained a better quality than Bermuda grass after the drought, having recorded a higher aesthetic score, higher relative water content and a lower electrolyte leakage. Results suggest that, both species are considerably tolerant to short-term drought though Bahia grass seems more promising.Int. J. Appl. Sci. Biotechnol. Vol 6(1): 12-16


1990 ◽  
Vol 20 (5) ◽  
pp. 503-507 ◽  
Author(s):  
T. E. Kolb ◽  
T. W. Bowersox ◽  
L. H. McCormick

Growth of northern red oak (Quercusrubra L.), white ash (Fraxinusamericana L.), and white pine (Pinusstrobus L.) seedlings was evaluated for 2 years after germination in 12 environments that consisted of four levels of herbaceous interference (fern, fern free, grass, grass free) crossed with three levels of light intensity (100, 45, and 20% full sun), at two clear-cuts in central Pennsylvania. Grass and fern interference reduced soil moisture content and reduced height or diameter growth of all species. Shading ameliorated soil moisture, reduced herbaceous growth, generally reduced growth of all tree species in interference-free environments, and had no effect on growth of any tree species in fern and grass environments. Reduction in growth due to herbaceous interference was lower for northern red oak and white pine than for white ash, while shading had similar effects on growth of all species. Results suggest that stresses induced by shading alone have little short-term effect on the establishment of these species under conditions of heavy herbaceous interference.


1962 ◽  
Vol 59 (2) ◽  
pp. 205-206

The nitrate-nitrogen contents of herbage at the first cut of 1956, and at a first cut in 1957Herbage samples from two replicates of the first cut of 1956, and from two replicates of a first cut taken in 1957 in the present experiment, were analysed for nitrate-N. The 1957 results are included here as illustrating the influence of season on nitrate-N accumulation, although data from that year have not been reported in the two papers of the present series. Attention has been limited to first cuts, as nitrate-N accumulation is normally greater the shorter the interval between, the application of nitrogen fertilizer and sampling, and in addition the spring flush of growth is usually conducive to high nitrate-N contents (ap Griffith, 1961).


2006 ◽  
Vol 46 (9) ◽  
pp. 1217 ◽  
Author(s):  
C. M. Menzel ◽  
P. Broomhall

The effects of fertilisers on 8 tropical turfgrasses growing in 100-L bags of sand were studied over winter in Murrumba Downs, just north of Brisbane in southern Queensland (latitude 27.4°S, longitude 153.1°E). The species used were: Axonopus compressus (broad-leaf carpetgrass), Cynodon dactylon (bermudagrass ‘Winter Green’) and C. dactylon × C. transvaalensis hybrid (‘Tifgreen’), Digitaria didactyla (Queensland blue couch), Paspalum notatum (bahiagrass ‘38824’), Stenotaphrum secundatum (buffalograss ‘Palmetto’), Eremochloa ophiuroides (centipedegrass ‘Centec’) and Zoysia japonica (zoysiagrass ‘ZT-11’). Control plots were fertilised with complete fertilisers every month from May to September (72 kg N/ha, 31 kg P/ha, 84 kg K/ha, 48 kg S/ha, 30 kg Ca/ha and 7.2 kg Mg/ha), and unfertilised plots received no fertiliser. Carpetgrass and standard bermudagrass were the most sensitive species to nutrient supply, with lower shoot dry weights in the unfertilised plots (shoots mowed to thatch level) compared with the fertilised plots in June. There were lower shoot dry weights in the unfertilised plots in July for all species, except for buffalograss, centipedegrass and zoysiagrass, and lower shoot dry weights in the unfertilised plots in August for all species, except for centipedegrass. At the end of the experiment in September, unfertilised plots were 11% of the shoot dry weights of fertilised plots, with all species affected. Mean shoot nitrogen concentrations fell from 3.2 to 1.7% in the unfertilised plots from May to August, below the sufficiency range for turfgrasses (2.8–3.5%). There were also declines in P (0.45–0.36%), K (2.4–1.5%), S (0.35–0.25%), Mg (0.24–0.18%) and B (9–6 mg/kg), which were all in the sufficiency range. The shoots in the control plots took up the following levels (kg/ha.month) of nutrients: N, 10.0–27.0; P, 1.6–4.0; K, 8.2–19.8; S, 1.0–4.2; Ca, 1.1–3.3; and Mg, 0.8–2.2, compared with applications (kg/ha.month) of: N, 72; P, 31; K, 84; S, 48; Ca, 30; and Mg, 7.2, indicating a recovery of 14–38% for N, 5–13% for P, 10–24% for K, 2–9% for S, 4–11% for Ca and 11–30% for Mg. These results suggest that buffalograss, centipedegrass and zoysiagrass are less sensitive to low nutrient supply than carpetgrass, bermudagrass, blue couch and bahiagrass. Data on nutrient uptake showed that the less sensitive species required only half or less of the nitrogen required to maintain the growth of the other grasses, indicating potential savings for turf managers in fertiliser costs and the environment in terms of nutrients entering waterways.


1961 ◽  
Vol 33 (1) ◽  
pp. 169-184
Author(s):  
Armi Kaila ◽  
Pentti Hänninen

The distribution of ammonium nitrogen and nitrate nitrogen in the soils of field trials was followed in two growing seasons. In these trials ammonium nitrate limestone and calcium nitrate were, at several rates, applied as surface dressing. It was found that not only the ammonium nitrogen but also the nitrate nitrogen applied to the surface of loam, silt, silt clay, and fine sand clay soils tended to remain in the top inch for a considerable period in the absence of heavy rainfalls or a longer wet period. The plants appeared rapidly to deplete the layers downwards from 1 inch, but even after six and eight weeks from the application of the fertilizers the ammonium nitrogen and nitrate nitrogen contents of the surface inch could be markedly higher in the treated plots than in the untreated ones. In the non-cropped soil, eight weeks after the application of the fertilizers, the mineral nitrogen content of the top inch corresponded to about 60 % of the nitrogen applied. On the basis of these results the working in or placement of nitrogen fertilizers seems to be profitable. Fixation of ammonium nitrogen in unexchangeable forms was observed in some of the trials. This, however, did not significantly impair the value of ammonium nitrate limestone as a nitrogen source in these trials.


2017 ◽  
Vol 2 (47) ◽  
pp. 13-30
Author(s):  
Silvia Irene Boccanelli ◽  
Claudia Alzugaray ◽  
Eduardo Andrés Franceschi

El objetivo de este trabajo fue caracterizar las comunidades herbáceas espontáneas que constituyen los céspedes del parque J.F. Villarino (Provincia de Santa Fe, Argentina) y evaluar la vegetación emergente y el banco de semillas del suelo. Se utilizaron parcelas de inventario de 16 m 2 . Los datos fueron analizados con métodos multivariados. En la vegetación se observaron tres grupos: Grupos 1, 2 y 3 dominados por Cynodon dactylon, Paspalum notatum y Digitaria sanguinalis, respectivamente. En el banco de semillas se reconocieron dos grupos, que se diferenciaron por la importancia relativa de alguna de sus especies. El 62 % de las especies del banco presentó una distribución agregada (Índice de Morisita). La similitud entre la vegetación y el banco fue de 55,7% (Índice de Sörensen). El 47 % de las especies que en la vegetación se destacaron por su constancia y/o abundancia, también se encontraron en el banco, aunque pocas alcanzaron una densidad alta. En ambas situaciones predominaron las especies nativas (80,3 % en céspedes y 61,9 % en el banco del suelo) y perennes (73,8 % y 58,5 % respectivamente). Los resultados señalan la importancia de preservar los céspedes espontáneos, dado que contienen y actúan como refugio de especies nativas del pastizal pampeano extinto en la región. 


Sign in / Sign up

Export Citation Format

Share Document