scholarly journals The regulation of stearoyl-CoA desaturase gene expression is tissue specific in chickens

2007 ◽  
Vol 192 (1) ◽  
pp. 229-236 ◽  
Author(s):  
Sami Dridi ◽  
Mohammed Taouis ◽  
Arieh Gertler ◽  
Eddy Decuypere ◽  
Johan Buyse

Emerging evidence suggests a potential role of stearoyl-CoA desaturase (SCD)-1 in the control of body weight and energy homeostasis. The present study was conducted to investigate the effects of several energy balance-related factors (leptin, cerulenin, food deprivation, genotype, and gender) on SCD gene expression in chickens. In experiment 1, 6-week-old female and male broiler chickens were used. In experiment 2, two groups of 3-week-old broiler chickens were continuously infused with recombinant chicken leptin (8 μg/kg/h) or vehicle for 6 h. In experiment 3, two groups of 2-week-old broiler chickens received i.v. injections of cerulenin (15 mg/kg) or vehicle. In experiment 4, two broiler chicken lines (fat and lean) were submitted to two nutritional states (food deprivation for 16 or 24 h and feeding ad libitum). At the end of each experiment, tissues were collected for analyzing SCD gene expression. Data from experiment 1 showed that SCD is ubiquitously expressed in chicken tissues with highest levels in the proventriculus followed by the ovary, hypothalamus, kidney, liver, and adipose tissue in female, and hypothalamus, leg muscle, pancreas, liver, and adipose tissue in male. Female chickens exhibited significantly higher SCD mRNA levels in kidney, breast muscle, proventriculus, and intestine than male chickens. However, hypothalamic SCD gene expression was higher in male than in female (P < 0.05). Leptin increased SCD gene expression in chicken liver (P < 0.05), whereas cerulenin decreased SCD mRNA levels in muscle. Both leptin and cerulenin significantly reduced food intake (P < 0.05). Food deprivation for either 16 or 24 h decreased the hepatic SCD gene expression in fat line and lean line chickens compared with their fed counterparts (P < 0.05). The hypothalamic SCD mRNA levels were decreased in both lines only after 24 h of food deprivation (P < 0.05). In conclusion, SCD is ubiquitously expressed in chickens and it is regulated by leptin, cerulenin, nutritional state, and gender in a tissue-specific manner.

2004 ◽  
Vol 78 (2) ◽  
pp. 237-243 ◽  
Author(s):  
Z.C.T.R. Daniel ◽  
A.M. Salter ◽  
P.J. Buttery

AbstractThe effect of vitamin A (retinol) on ovine stearoyl-CoA desaturase (SCD) mRNA levels and fatty acid composition was investigated. Sheep adipose tissue explants were maintained in culture for 24 h in the presence of all-trans retinoic acid (RA). Tissue SCD mRNA levels were increased with 25 μmol/l RA but the levels of SCD mRNA in tissue treated with 100 μmol/l RA were not different from control. The effect of vitamin A supplement on SCD mRNA levels in vivo was then characterized: growing lambs were given a concentrate diet (2 kg/day) containing 0, 0.225, 1.125 and 3.375 mg vitamin A per kg diet for 21 days. Treatment resulted in a concentration-dependent increase in adipose tissue and liver SCD mRNA levels, although the greatest effect was seen in the liver. SCD mRNA levels were highest in tissue from animals given 0.225 mg vitamin A per kg diet and further increases in vitamin A supplementation were not accompanied by corresponding increases in SCD gene expression. Fatty acid composition was also determined. Overall, tissue from animals given vitamin A had greater levels of both palmitoleic and oleic acid relative to their precursors. These data clearly show that SCD gene expression in adipose tissue and liver is regulated by retinoic acid and the liver appears to be most responsive. However, although significant, the change in the proportion of oleic acid was only small indicating that dietary manipulation with vitamin A is not a suitable method for increasing the unsaturated fat content of sheep meat.


1997 ◽  
Vol 273 (2) ◽  
pp. R768-R776 ◽  
Author(s):  
J. G. Mercer ◽  
C. B. Lawrence ◽  
K. M. Moar ◽  
T. Atkinson ◽  
P. Barrett

The effect of food deprivation on hypothalamic neuropeptide Y (NPY) and corticotropin-releasing factor (CRF) gene expression in the Djungarian hamster was quantified by in situ hybridization. Hamsters housed in short days (SD) for 18 wk decreased body weight by 40% and exhibited 200% increases in both NPY and CRF mRNA when deprived of food for 24 h. Prior gonadectomy in long days (LD) affected neither basal gene expression nor the induction of gene expression by food deprivation. Gene expression in juvenile LD hamsters similar in body weight to SD animals was relatively insensitive to food deprivation of either 24- or 48-h duration or to subsequent refeeding. In juvenile hamsters, food deprivation for 24 but not 48 h decreased ob (obese) gene expression in inguinal but not epididymal white adipose tissue; ob mRNA levels were restored by refeeding. All food-deprived hamsters had reduced plasma insulin concentrations, but plasma cortisol was only elevated in SD food-deprived animals. NPY gene expression was also increased after daily dexamethasone injections in adult LD hamsters. These results suggest that the neuroendocrine consequences of food deprivation in SD Djungarian hamsters are determined by some factor other than absolute body mass such as the size of adipose tissue reserves.


2000 ◽  
Vol 279 (6) ◽  
pp. R2329-R2335 ◽  
Author(s):  
Paul Trayhurn ◽  
Jacqueline S. Duncan ◽  
Anne M. Wood ◽  
John H. Beattie

White adipose tissue (WAT) has been examined to determine whether the gene encoding metallothionein (MT), a low-molecular-weight stress response protein, is expressed in the tissue and whether MT may be a secretory product of adipocytes. The MT-1 gene was expressed in epididymal WAT, with MT-1 mRNA levels being similar in lean and obese ( ob/ ob) mice. MT-1 mRNA was found in each of the main adipose tissue sites (epididymal, perirenal, omental, subcutaneous), and there was no major difference between depots. Separation of adipocytes from the stromal-vascular fraction of WAT indicated that the MT gene (MT-1 and MT-2) was expressed in adipocytes themselves. Treatment of mice with zinc had no effect on MT-1 mRNA levels in WAT, despite strong induction of MT-1 expression in the liver. MT-1 gene expression in WAT was also unaltered by fasting or norepinephrine. However, administration of a β3-adrenoceptor agonist, BRL-35153A, led to a significant increase in MT-1 mRNA. On differentiation of fibroblastic preadipocytes to adipocytes in primary culture, MT was detected in the medium, suggesting that the protein may be secreted from WAT. It is concluded that WAT may be a significant site of MT production; within adipocytes, MT could play an antioxidant role in protecting fatty acids from damage.


1988 ◽  
Vol 254 (2) ◽  
pp. 483-487 ◽  
Author(s):  
I Dugail ◽  
A Quignard-Boulange ◽  
R Bazin ◽  
X Le Liepvre ◽  
M Lavau

The regulation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene expression was studied during the onset of obesity in the genetically obese (fa/fa) rat by determination of GAPDH activity and hybridizable mRNA amounts in adipose tissue and liver from suckling and weanling rats. GADPH activity remained low throughout the suckling period, and a burst of activity occurred after weaning in both lean and obese pups. As early as 7 days of age, adipose tissue from pre-obese rats displayed a significant increase in enzyme activity, whereas no difference could be detected in the liver. In both suckling (16 days of age) and weanling (30 days of age) obese rats a proportionate increase in GAPDH activity and mRNA amounts was observed in adipose tissue, but not in liver. It is concluded that the obese genotype influences GAPDH gene expression at a pretranslational level and in a tissue-specific manner. This phenomenon could partly contribute to the hyperactive fat accretion in the obese rat, since glycolysis is the major metabolic pathway for lipogenic substrates in adipose tissue.


Endocrinology ◽  
2010 ◽  
Vol 151 (7) ◽  
pp. 3169-3180 ◽  
Author(s):  
Manjunath Ramanjaneya ◽  
Jing Chen ◽  
James E. Brown ◽  
Gyanendra Tripathi ◽  
Manfred Hallschmid ◽  
...  

Nesfatin-1 is a recently identified anorexigenic peptide derived from its precursor protein, nonesterified fatty acid/nucleobindin 2 (NUCB2). Although the hypothalamus is pivotal for the maintenance of energy homeostasis, adipose tissue plays an important role in the integration of metabolic activity and energy balance by communicating with peripheral organs and the brain via adipokines. Currently no data exist on nesfatin-1 expression, regulation, and secretion in adipose tissue. We therefore investigated NUCB2/nesfatin-1 gene and protein expression in human and murine adipose tissue depots. Additionally, the effects of insulin, dexamethasone, and inflammatory cytokines and the impact of food deprivation and obesity on nesfatin-1 expression were studied by quantitative RT-PCR and Western blotting. We present data showing NUCB2 mRNA (P &lt; 0.001), nesfatin-1 intracellular protein (P &lt; 0.001), and secretion (P &lt; 0.01) were significantly higher in sc adipose tissue compared with other depots. Also, nesfatin-1 protein expression was significantly increased in high-fat-fed mice (P &lt; 0.01) and reduced under food deprivation (P &lt; 0.01) compared with controls. Stimulation of sc adipose tissue explants with inflammatory cytokines (TNFα and IL-6), insulin, and dexamethasone resulted in a marked increase in intracellular nesfatin-1 levels. Furthermore, we present evidence that the secretion of nesfatin-1 into the culture media was dramatically increased during the differentiation of 3T3-L1 preadipocytes into adipocytes (P &lt; 0.001) and after treatments with TNF-α, IL-6, insulin, and dexamethasone (P &lt; 0.01). In addition, circulating nesfatin-1 levels were higher in high-fat-fed mice (P &lt; 0.05) and showed positive correlation with body mass index in human. We report that nesfatin-1 is a novel depot specific adipokine preferentially produced by sc tissue, with obesity- and food deprivation-regulated expression.


1997 ◽  
Vol 273 (2) ◽  
pp. R762-R767 ◽  
Author(s):  
A. Chaudhry ◽  
J. G. Granneman

Brown adipose tissue (BAT) expresses several adenylyl cyclase (AC) subtypes, and adrenergic stimulation selectively upregulates AC-III gene expression. Previous studies have described synergistic interactions between the sympathetic nervous system (SNS) and 3,5,3'-triiodothyronine (T3) on the regulation of gene expression in BAT. Because adrenergic stimulation also increases the activity of BAT type II thyroxine 5'-deiodinase (DII) and local T3 generation is important for many functional responses in BAT, we examined the effects of thyroid hormone status on the expression of various AC subtypes. Hypothyroidism selectively increased AC-III mRNA levels in BAT but not in white adipose tissue. Of the other subtypes examined, hypothyroidism did not alter AC-VI mRNA levels and slightly reduced AC-IX mRNA levels in BAT. The increase in AC-III expression was paralleled by an increase in forskolin-stimulated AC activity in BAT membranes. Sympathetic denervation of BAT abolished the increase in both AC activity and AC-III mRNA expression produced by hypothyroidism, but did not affect the expression of other subtypes. Surgical denervation also prevented the induction of AC-III in the cold-stressed euthyroid rat, but injections of T3 failed to alter AC-III expression in intact or denervated BAT. Our results indicate that T3 does not directly affect expression of AC-III. Rather, hypothyroidism increases BAT AC-III expression indirectly via an increase in sympathetic stimulation. Furthermore, our results strongly indicate that the increase in AC activity in hypothyroid BAT is due to increased expression of AC-III.


2018 ◽  
Vol 104 (3) ◽  
pp. 688-696 ◽  
Author(s):  
Berenice Segrestin ◽  
José Maria Moreno-Navarrete ◽  
Kevin Seyssel ◽  
Maud Alligier ◽  
Emmanuelle Meugnier ◽  
...  

Abstract Context Iron overload has been associated with greater adipose tissue (AT) depots. We retrospectively studied the potential interactions between iron and AT during an experimental overfeeding in participants without obesity. Methods Twenty-six participants (mean body mass index ± SD, 24.7 ± 3.1 kg/m2) underwent a 56-day overfeeding (+760 kcal/d). Serum iron biomarkers (ELISA), subcutaneous AT (SAT) gene expression, and abdominal AT distribution assessed by MRI were analyzed at the beginning and the end of the intervention. Results Before intervention: SAT mRNA expression of the iron transporter transferrin (Tf) was positively correlated with the expression of genes related to lipogenesis (lipin 1, ACSL1) and lipid storage (SCD). SAT expression of the ferritin light chain (FTL) gene, encoding ferritin (FT), an intracellular iron storage protein, was negatively correlated to SREBF1, a gene related to lipogenesis. Serum FT (mean, 92 ± 57 ng/mL) was negatively correlated with the expression of SAT genes linked to lipid storage (SCD, DGAT2) and to lipogenesis (SREBF1, ACSL1). After intervention: Overfeeding led to a 2.3 ± 1.3-kg weight gain. In parallel to increased expression of lipid storage–related genes (mitoNEET, SCD, DGAT2, SREBF1), SAT Tf, SLC40A1 (encoding ferroportin 1, a membrane iron export channel) and hephaestin mRNA levels increased, whereas SAT FTL mRNA decreased, suggesting increased AT iron requirement. Serum FT decreased to 67 ± 43 ng/mL. However, no significant associations between serum iron biomarkers and AT distribution or expansion were observed. Conclusion In healthy men, iron metabolism gene expression in SAT is associated with lipid storage and lipogenesis genes expression and is modulated during a 56-day overfeeding diet.


Author(s):  
Eric A. Wilson ◽  
Hui Sun ◽  
Zhenzhong Cui ◽  
Marshal T. Jahnke ◽  
Mritunjay Pandey ◽  
...  

The G protein subunits Gqα and G11α (Gq/11α) couple receptors to phospholipase C, leading to increased intracellular calcium. In this study we investigated the consequences of Gq/11α deficiency in the dorsomedial hypothalamus (DMH), a critical site for the control of energy homeostasis. Mice with DMH-specific deletion of Gq/11α (DMHGq/11KO) were generated by stereotaxic injection of AAV-Cre-GFP into the DMH of Gqαflox/flox:G11α-/- mice. Compared to control mice that received DMH injection of AAV-GFP, DMHGq/11KO mice developed obesity associated with reduced energy expenditure without significant changes in food intake or physical activity. DMHGq/11KO mice showed no defects in the ability of the melanocortin agonist melanotan II to acutely stimulate energy expenditure or to inhibit food intake. At room temperature (22oC) DMHGq/11KO mice showed reduced sympathetic nervous system activity in brown adipose tissue (BAT) and heart, accompanied with decreased basal BAT Ucp1 gene expression and lower heart rates. These mice were cold intolerant when acutely exposed to cold (6oC for 5 hours) and had decreased cold-stimulated BAT Ucp1 gene expression. DMHGq/11KO mice also failed to adapt to gradually declining ambient temperatures and to develop adipocyte browning in inguinal white adipose tissue although their BAT Ucp1 was proportionally stimulated. Consistent with impaired cold-induced thermogenesis, the onset of obesity in DMHGq/11KO mice was significantly delayed when housed under thermoneutral conditions (30ºC). Thus, our results show that Gqα and G11α in the DMH are required for the control of energy homeostasis by stimulating energy expenditure and thermoregulation.


1996 ◽  
Vol 271 (2) ◽  
pp. E333-E339 ◽  
Author(s):  
M. Hayase ◽  
Y. Ogawa ◽  
G. Katsuura ◽  
H. Shintaku ◽  
K. Hosoda ◽  
...  

To elucidate the regulation of obese (ob) gene expression in obesity and diabetes, we examined ob gene expression in KK mice and congenic lethal yellow obese KKAy mice. Northern blot analysis revealed that the ob mRNA levels are roughly equivalent in each of the epididymal, mesenteric, and subcutaneous white adipose tissue (WAT) from KK and KKAy mice at 4 wk of age, when the obese phenotype of KKAy mice was not apparent. Expression of the ob gene was augmented in the mesenteric and subcutaneous WAT but was unchanged in the epididymal WAT in KKAy mice at 12 wk of age, when KKAy mice developed marked obesity with hyperglycemia, hyperlipidemia, and hyperinsulinemia. The ob gene expression was also examined during fasting in 12-wk-old KK and KKAy mice. After 24 or 72 h of fasting in both mouse strains, ob gene expression was downregulated in the epididymal and mesenteric WAT but was unchanged in the subcutaneous WAT. The present study demonstrates that adipose tissue expression of the ob gene is regulated depending on the nutritional status in KK and KKAy mice.


Sign in / Sign up

Export Citation Format

Share Document