scholarly journals Enteric Oxalate Secretion Mediated by Slc26a6 Defends against Hyperoxalemia in Murine Models of Chronic Kidney Disease

2020 ◽  
Vol 31 (9) ◽  
pp. 1987-1995 ◽  
Author(s):  
Laura I. Neumeier ◽  
Robert B. Thomson ◽  
Martin Reichel ◽  
Kai-Uwe Eckardt ◽  
Peter S. Aronson ◽  
...  

BackgroundA state of oxalate homeostasis is maintained in patients with healthy kidney function. However, as GFR declines, plasma oxalate (Pox) concentrations start to rise. Several groups of researchers have described augmentation of oxalate secretion in the colon in models of CKD, but the oxalate transporters remain unidentified. The oxalate transporter Slc26a6 is a candidate for contributing to the extrarenal clearance of oxalate via the gut in CKD.MethodsFeeding a diet high in soluble oxalate or weekly injections of aristolochic acid induced CKD in age- and sex-matched wild-type and Slc26a6−/− mice. qPCR, immunohistochemistry, and western blot analysis assessed intestinal Slc26a6 expression. An oxalate oxidase assay measured fecal and Pox concentrations.ResultsFecal oxalate excretion was enhanced in wild-type mice with CKD. This increase was abrogated in Slc26a6−/− mice associated with a significant elevation in plasma oxalate concentration. Slc26a6 mRNA and protein expression were greatly increased in the intestine of mice with CKD. Raising Pox without inducing kidney injury did not alter intestinal Slc26a6 expression, suggesting that changes associated with CKD regulate transporter expression rather than elevations in Pox.ConclusionsSlc26a6-mediated enteric oxalate secretion is critical in decreasing the body burden of oxalate in murine CKD models. Future studies are needed to address whether similar mechanisms contribute to intestinal oxalate elimination in humans to enhance extrarenal oxalate clearance.

1992 ◽  
Vol 27 (4) ◽  
pp. 833-844 ◽  
Author(s):  
Micheline Hanna

Abstract In order to quantitatively assess the effect of sample storage conditions on the body burden analysis of organic contaminants, a comparative analysis was carried out on the unionid mussel Elliptic complanata. The mussels were divided into two groups, each with distinct storage conditions, while Group A was kept in the freezer at −20°C, Group B was kept in the refrigerator for five days at 5°C. All the compounds present in the control were also present in Group B samples. Analysis of the organic contaminants in each of these two groups showed that for total PCB concentrations, the two treatments were not significantly different; however when compared individually 6 of the 13 PCB congeners showed significant differences. The observed differences were relatively small for individual PCB congeners (7.1 to 15.3%), higher for chlorobenzenes (10.5 to 36.4%), and yet higher for HCE (44.1%); the difference for HCE, although large is nevertheless not significant, even if only marginally so.


2020 ◽  
Vol 20 (8) ◽  
pp. 1262-1267
Author(s):  
Haojun Yang ◽  
Hanyang Liu ◽  
YuWen Jiao ◽  
Jun Qian

Background: G protein-coupled bile acid receptor (TGR5) is involved in a number of metabolic diseases. The aim of this study was to identify the role of TGR5 after Roux-en-Y gastric bypass (GBP). Methods: Wild type and TGR5 knockout mice (tgr5-/-) were fed a high-fat diet (HFD) to establish the obesity model. GBP was performed. The changes in body weight and food intake were measured. The levels of TGR5 and peptide YY (PYY) were evaluated by RT-PCR, Western blot, and ELISA. Moreover, the L-cells were separated from wild type and tgr5-/- mice. The levels of PYY in L-cells were evaluated by ELISA. Results: The body weights were significantly decreased after GBP in wild type mice (p<0.05), but not tgr5-/- mice (p>0.05). Food intake was reduced after GBP in wild type mice, but also not significantly affected in tgr5-/- mice (p>0.05). The levels of PYY were significantly increased after GBP compared with the sham group (p<0.05); however, in tgr5-/- mice the expression of PYY was not significantly affected (p>0.05). After INT-777 stimulation in L-cells obtained from murine intestines, the levels of PYY were significantly increased in L-cells tgr5+/+ (p<0.05). Conclusion: Our study suggests that GBP up-regulated the expression of TGR5 in murine intestines, and increased the levels of PYY, which further reduced food intake and decreased the body weight.


2021 ◽  
Vol 14 (1) ◽  
pp. e236695 ◽  
Author(s):  
Rasmi Ranjan Sahoo ◽  
Sourav Pradhan ◽  
Akhil Pawan Goel ◽  
Anupam Wakhlu

Staphylococcus-associated glomerulonephritis (SAGN) occurs as a complication of staphylococcal infection elsewhere in the body. Dermatomyositis (DM) can be associated with glomerulonephritis due to the disease per se. We report a case of a 40-year-old male patient with DM who presented with acute kidney injury, and was initially pulsed with methylprednisolone for 3 days, followed by dexamethasone equivalent to 1 mg/kg/day prednisolone. He was subsequently found to have SAGN on kidney biopsy along with staphylococcus bacteraemia and left knee septic arthritis. With proof of definitive infection, intravenous immunoglobulin 2 g/kg over 2 days was given and steroids were reduced. He was treated with intravenous vancomycin. With treatment, the general condition of the patient improved. On day 38, he developed infective endocarditis and died of congestive heart failure subsequently. Undiagnosed staphylococcal sepsis complicating a rheumatological disease course can lead to complications like SAGN, infective endocarditis and contribute to increased morbidity and mortality, as is exemplified by our case.


2021 ◽  
Vol 22 (10) ◽  
pp. 5116
Author(s):  
Hideki Katow ◽  
Tomoko Katow ◽  
Hiromi Yoshida ◽  
Masato Kiyomoto

The multiple functions of the wild type Huntington’s disease protein of the sea urchin Hemicentrotus pulcherrimus (Hp-Htt) have been examined using the anti-Hp-Htt antibody (Ab) raised against synthetic oligopeptides. According to immunoblotting, Hp-Htt was detected as a single band at around the 350 kDa region at the swimming blastula stage to the prism larva stage. From the 2-arm pluteus stage (2aPL), however, an additional smaller band at the 165 kDa region appeared. Immunohistochemically, Hp-Htt was detected in the nuclei and the nearby cytoplasm of the ectodermal cells from the swimming blastula stage, and the blastocoelar cells from the mid-gastrula stage. The Ab-positive signal was converged to the ciliary band-associated strand (CBAS). There, it was accompanied by several CBAS-marker proteins in the cytoplasm, such as glutamate decarboxylase. Application of Hp-Htt morpholino (Hp-Htt-MO) has resulted in shortened larval arms, accompanied by decreased 5-bromo-2-deoxyuridin (BrdU) incorporation by the ectodermal cells of the larval arms. Hp-Htt-MO also resulted in lowered ciliary beating activity, accompanied by a disordered swirling pattern formation around the body. These Hp-Htt-MO-induced deficiencies took place after the onset of CBAS system formation at the larval arms. Thus, Hp-Htt is involved in cell proliferation and the ciliary beating pattern regulation signaling system in pluteus larvae.


1998 ◽  
Vol 275 (3) ◽  
pp. R677-R682 ◽  
Author(s):  
Susan R. Kayar ◽  
Terry L. Miller ◽  
Meyer J. Wolin ◽  
Eugenia O. Aukhert ◽  
Milton J. Axley ◽  
...  

We present a method for reducing the risk of decompression sickness (DCS) in rats exposed to high pressures of H2. Suspensions of the human colonic microbe Methanobrevibacter smithii were introduced via a colonic cannula into the large intestines of the rats. While the rats breathed H2in a hyperbaric chamber, the microbe metabolized some of the H2diffusing into the intestine, converting H2and CO2to methane and water. Rate of release of methane from the rats, which was monitored by gas chromatography, varied with chamber H2pressure. This rate was higher during decompression than during compression, suggesting that during decompression the microbe was metabolizing H2stored in the rats’ tissues. Rats treated with M. smithii had a 25% (5 of 20) incidence of DCS, which was significantly lower ( P < 0.01) than the 56% (28 of 50) incidence of untreated controls, brought on by a standardized compression and decompression sequence. Thus using a microbe in the intestine to remove an estimated 5% of the body burden of H2reduced DCS risk by more than one-half. This method of biochemical decompression may potentially facilitate human diving.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Safia Akhtar ◽  
Silas A. Culver ◽  
Helmy M. Siragy

AbstractRecent studies suggested that renal gluconeogenesis is substantially stimulated in the kidney in presence of obesity. However, the mechanisms responsible for such stimulation are not well understood. Recently, our laboratory demonstrated that mice fed high fat diet (HFD) exhibited increase in renal Atp6ap2 [also known as (Pro)renin receptor] expression. We hypothesized that HFD upregulates renal gluconeogenesis via Atp6ap2-PGC-1α and AKT pathway. Using real-time polymerase chain reaction, western blot analysis and immunostaining, we evaluated renal expression of the Atp6ap2 and renal gluconeogenic enzymes, PEPCK and G6Pase, in wild type and inducible nephron specific Atp6ap2 knockout mice fed normal diet (ND, 12 kcal% fat) or a high-fat diet (HFD, 45 kcal% fat) for 8 weeks. Compared with ND, HFD mice had significantly higher body weight (23%) (P < 0.05), renal mRNA and protein expression of Atp6ap2 (39 and 35%), PEPCK (44 and 125%) and G6Pase (39 and 44%) respectively. In addition, compared to ND, HFD mice had increased renal protein expression of PGC-1α by 32% (P < 0.05) and downregulated AKT by 33% (P < 0.05) respectively in renal cortex. Atp6ap2-KO abrogated these changes in the mice fed HFD. In conclusion, we identified novel regulation of renal gluconeogenesis by Atp6ap2 in response to high fat diet via PGC1-α/AKT-1 pathway.


1983 ◽  
Vol 3 (8) ◽  
pp. 1381-1388 ◽  
Author(s):  
L P Villarreal ◽  
R T White

A late region deletion mutant of simian virus 40 (dl5) was previously shown to be deficient in the transport of nuclear RNA. This is a splice junction deletion that has lost the 3' end of an RNA leader, an intervening sequence, and the 5' end of the splice acceptor site on the body of the mRNA. In this report, we analyzed the steady-state structure of the untransported nuclear RNA. The 5' ends of this RNA are heterogeneous but contain a prominent 5' end at the normal position (nucleotide 325) in addition to several other prominent 5' ends not seen in wild-type RNA. The 3' end of this RNA does not occur at the usual position (nucleotide 2674) of polyadenylation; instead, this RNA is non-polyadenylated, with the 3' end occurring either downstream or upstream of the normal position.


2013 ◽  
Vol 304 (8) ◽  
pp. F1054-F1065 ◽  
Author(s):  
Punithavathi Ranganathan ◽  
Calpurnia Jayakumar ◽  
Ganesan Ramesh

Acute kidney injury-induced organ fibrosis is recognized as a major risk factor for the development of chronic kidney disease, which remains one of the leading causes of death in the developed world. However, knowledge on molecules that may suppress the fibrogenic response after injury is lacking. In ischemic models of acute kidney injury, we demonstrate a new function of netrin-1 in regulating interstitial fibrosis. Acute injury was promptly followed by a rise in serum creatinine in both wild-type and netrin-1 transgenic animals. However, the wild-type showed a slow recovery of kidney function compared with netrin-1 transgenic animals and reached baseline by 3 wk. Histological examination showed increased infiltration of interstitial macrophages, extensive fibrosis, reduction of capillary density, and glomerulosclerosis. Collagen IV and α-smooth muscle actin expression was absent in sham-operated kidneys; however, their expression was significantly increased at 2 wk and peaked at 3 wk after reperfusion. These changes were reduced in the transgenic mouse kidney, which overexpresses netrin-1 in proximal tubular epithelial cells. Fibrosis was associated with increased expression of IL-6 and extensive and chronic activation of STAT3. Administration of IL-6 exacerbated fibrosis in vivo in wild-type, but not in netrin-1 transgenic mice kidney and increased collagen I expression and STAT3 activation in vitro in renal epithelial cells subjected to hypoxia-reoxygenation, which was suppressed by netrin-1. Our data suggest that proximal tubular epithelial cells may play a prominent role in interstitial fibrosis and that netrin-1 could be a useful therapeutic agent for treating kidney fibrosis.


1984 ◽  
Vol 4 (4) ◽  
pp. 813-816
Author(s):  
A Barkan ◽  
J E Mertz

The size distributions of polyribosomes containing each of three simian virus 40 late 16S mRNA species that differ in nucleotide sequence only within their leaders were determined. The two 16S RNA species with shorter leaders were incorporated into polysomes that were both larger (on average) and narrower in size distribution than was the predominant wild-type 16S RNA. Therefore, the nucleotide sequence of the leader can influence the number of ribosomes present on the body of an mRNA molecule. We propose a model in which the excision from leaders of sizeable translatable regions permits more frequent utilization of internally located translation initiation signals, thereby enabling genes encoded within the bodies of polygenic mRNAs to be translated at higher rates. In addition, the data provide the first direct evidence that VP1 can, indeed, be synthesized in vivo from the species of 16S mRNA that also encodes the 61-amino acid leader protein.


Sign in / Sign up

Export Citation Format

Share Document