scholarly journals Glomerular-Specific Gene Excision In Vivo

2002 ◽  
Vol 13 (3) ◽  
pp. 788-793 ◽  
Author(s):  
Vera Eremina ◽  
Mark Andrew Wong ◽  
Shiying Cui ◽  
Lois Schwartz ◽  
Susan E. Quaggin

ABSTRACT. Podocytes (glomerular visceral epithelial cells) are highly specialized cells that are found in the renal glomerulus and make up a major portion of the filtration barrier between the blood and urinary spaces. Recently, the identification of a number of genes responsible for both autosomal dominant and recessive forms of human nephrotic syndrome has provided insight into a number of molecules responsible for unique features of the podocyte such as the slit diaphragms. Despite these major advances in our understanding of podocyte biology, the function of many genes expressed in the podocyte remains unknown. Targeted gene disruption using homologous recombination in murine embryonic stem cells (ES cells) is a powerful tool to determine the biologic function of genes in vivo. However, resulting embryonic lethal or pleiotropic phenotypes often preclude the analysis of genes in specific renal cell types. To overcome this problem, a glomerular-specific Cre-recombinase transgenic murine line under the control of the Nphs1 (nephrin) promoter (Neph-Cre) was generated. This article reports successful Cre-mediated excision of a ‘floxed’ transgene specifically in podocytes in vivo. This murine founder line represents a powerful new tool for the manipulation of the expression of genes in podocytes and will provide valuable insight into podocyte biology in the whole animal.

2018 ◽  
Vol 20 (1) ◽  
pp. 19 ◽  
Author(s):  
Yadong Wei ◽  
Krishan Chhiba ◽  
Fengrui Zhang ◽  
Xujun Ye ◽  
Lihui Wang ◽  
...  

Sialic acid-binding Ig-like lectin 8 (Siglec-8) is expressed on the surface of human eosinophils, mast cells, and basophils—cells that participate in allergic and other diseases. Ligation of Siglec-8 by specific glycan ligands or antibodies triggers eosinophil death and inhibits mast cell degranulation; consequences that could be leveraged as treatment. However, Siglec-8 is not expressed in murine and most other species, thus limiting preclinical studies in vivo. Based on a ROSA26 knock-in vector, a construct was generated that contains the CAG promoter, a LoxP-floxed-Neo-STOP fragment, and full-length Siglec-8 cDNA. Through homologous recombination, this Siglec-8 construct was targeted into the mouse genome of C57BL/6 embryonic stem (ES) cells, and chimeric mice carrying the ROSA26-Siglec-8 gene were generated. After cross-breeding to mast cell-selective Cre-recombinase transgenic lines (CPA3-Cre, and Mcpt5-Cre), the expression of Siglec-8 in different cell types was determined by RT-PCR and flow cytometry. Peritoneal mast cells (dual FcεRI+ and c-Kit+) showed the strongest levels of surface Siglec-8 expression by multicolor flow cytometry compared to expression levels on tissue-derived mast cells. Siglec-8 was seen on a small percentage of peritoneal basophils, but not other leukocytes from CPA3-Siglec-8 mice. Siglec-8 mRNA and surface protein were also detected on bone marrow-derived mast cells. Transgenic expression of Siglec-8 in mice did not affect endogenous numbers of mast cells when quantified from multiple tissues. Thus, we generated two novel mouse strains, in which human Siglec-8 is selectively expressed on mast cells. These mice may enable the study of Siglec-8 biology in mast cells and its therapeutic targeting in vivo.


2009 ◽  
Vol 29 (10) ◽  
pp. 2794-2803 ◽  
Author(s):  
Xiaoling Wang ◽  
Meenalakshmi Chinnam ◽  
Jianmin Wang ◽  
Yanqing Wang ◽  
Xiaojing Zhang ◽  
...  

ABSTRACT Accumulating evidence suggests that regulation of RNA processing through an RNP-driven mechanism is important for coordinated gene expression. This hypothesis predicts that defects in RNP biogenesis will adversely affect the elaboration of specific gene expression programs. To explore the role of RNP biogenesis on mammalian development, we have characterized the phenotype of mice hypomorphic for Thoc1. Thoc1 encodes an essential component of the evolutionarily conserved TREX complex. TREX accompanies the elongating RNA polymerase II and facilitates RNP assembly and recruitment of RNA processing factors. Hypomorphic Thoc1 mice are viable despite significantly reduced Thoc1 expression in the tissues examined. While most tissues of Thoc1-deficient mice appear to develop and function normally, gametogenesis is severely compromised. Male infertility is associated with a loss in spermatocyte viability and abnormal endocrine signaling. We suggest that loss of spermatocyte viability is a consequence of defects in the expression of genes required for normal differentiation of cell types within the testes. A number of the genes affected appear to be direct targets for regulation by Thoc1. These findings support the notion that Thoc1-mediated RNP assembly contributes to the coordinated expression of genes necessary for normal differentiation and development in vivo.


1996 ◽  
Vol 5 (2) ◽  
pp. 131-143 ◽  
Author(s):  
Jonathan Dinsmore ◽  
Judson Ratliff ◽  
Terry Deacon ◽  
Peyman Pakzaba ◽  
Douglas Jacoby ◽  
...  

The controlled differentiation of mouse embryonic stem (ES) cells into near homogeneous populations of both neurons and skeletal muscle cells that can survive and function in vivo after transplantation is reported. We show that treatment of pluripotent ES cells with retinoic acid (RA) and dimethylsulfoxide (DMSO) induce differentiation of these cells into highly enriched populations of γ-aminobutyric acid (GABA) expressing neurons and skeletal myoblasts, respectively. For neuronal differentiation, RA alone is sufficient to induce ES cells to differentiate into neuronal cells that show properties of postmitotic neurons both in vitro and in vivo. In vivo function of RA-induced neuronal cells was demonstrated by transplantation into the quinolinic acid lesioned striatum of rats (a rat model for Huntington's disease), where cells integrated and survived for up to 6 wk. The response of embryonic stem cells to DMSO to form muscle was less dramatic than that observed for RA. DMSO-induced ES cells formed mixed populations of muscle cells composed of cardiac, smooth, and skeletal muscle instead of homogeneous populations of a single muscle cell type. To determine whether the response of ES cells to DMSO induction could be further controlled, ES cells were stably transfected with a gene coding for the muscle-specific regulatory factor, MyoD. When induced with DMSO, ES cells constitutively expressing high levels of MyoD differentiated exclusively into skeletal myoblasts (no cardiac or smooth muscle cells) that fused to form myotubes capable of spontaneous contraction. Thus, the specific muscle cell type formed was controlled by the expression of MyoD. These results provided evidence that the specific cell type formed (whether it be muscle, neuronal, or other cell types) can be controlled in vitro. Further, these results demonstrated that ES cells can provide a source of multiple differentiated cell types that can be used for transplantation.


Blood ◽  
2003 ◽  
Vol 101 (3) ◽  
pp. 886-893 ◽  
Author(s):  
Hideyo Hirai ◽  
Minetaro Ogawa ◽  
Norio Suzuki ◽  
Masayuki Yamamoto ◽  
Georg Breier ◽  
...  

Abstract Accumulating evidence in various species has suggested that the origin of definitive hematopoiesis is associated with a special subset of endothelial cells (ECs) that maintain the potential to give rise to hematopoietic cells (HPCs). In this study, we demonstrated that a combination of 5′-flanking region and 3′ portion of the first intron of the Flk-1 gene (Flk-1 p/e) that has been implicated in endothelium-specific gene expression distinguishes prospectively the EC that has lost hemogenic activity. We assessed the activity of this Flk-1 p/e by embryonic stem (ES) cell differentiation culture and transgenic mice by using theGFP gene conjugated to this unit. The expression ofGFP differed from that of the endogenous Flk-1gene in that it is active in undifferentiated ES cells and inactive in Flk-1+ lateral mesoderm. Flk-1 p/e becomes active after generation of vascular endothelial (VE)–cadherin+ ECs. Emergence of GFP− ECs preceded that of GFP+ ECs, and, finally, most ECs expressed GFP both in vitro and in vivo. Cell sorting experiments demonstrated that only GFP− ECs could give rise to HPCs and preferentially expressed Runx1 and c-Myb genes that are required for the definitive hematopoiesis. Integration of both GFP+ and GFP− ECs was observed in the dorsal aorta, but cell clusters appeared associated only to GFP−ECs. These results indicate that activation of Flk-1 p/e is associated with a process that excludes HPC potential from the EC differentiation pathway and will be useful for investigating molecular mechanisms underlying the divergence of endothelial and hematopoietic lineages.


1997 ◽  
Vol 17 (7) ◽  
pp. 3817-3822 ◽  
Author(s):  
M Levinson-Dushnik ◽  
N Benvenisty

The transcription factors of the hepatocyte nuclear factor 3 (HNF3) family, which are active in the liver, are expressed early during endoderm differentiation. To study their involvement in early murine development, we examined their role in embryonic stem (ES) cells. HNF3alpha or HNF3beta mRNA transcripts were not detected in ES cells before differentiation, and only low levels of HNF3beta mRNA were detected at a late stage of differentiation of ES cells to embryoid bodies (EB) (20 days after induction of differentiation). To examine the consequences of overexpressing HNF3alpha or -beta in ES cells, we transfected the two genes into these cells and determined the levels of expression of tissue-specific genes during EB differentiation. Specifically, we examined expression of albumin, cystic fibrosis transmembrane conductance regulator (CFTR), phosphoenolpyruvate carboxykinase (PEPCK), alpha1-antitrypsin, transthyretin, zeta-globin, and neurofilament 68kd as markers for different cell lineages. Overexpression of HNF3beta (and to a lesser extent of HNF3alpha) induced the expression of genes associated with endodermal lineage, namely, the genes for CFTR and albumin, but did not induce the expression of genes involved in late endoderm differentiation, such as the genes for PEPCK and alpha1-antitrypsin. Moreover, expression of HNF1beta was highly induced in HNF3-overexpressing cells, while expression of HNF1alpha and HNF4 was only mildly induced in these cells. Therefore, HNF3alpha and -beta seem to be involved in early endoderm differentiation of ES cells and together with other developmental factors are apparently needed for the induction of the endodermal lineage in vivo.


2018 ◽  
Vol 18 (4) ◽  
pp. 246-255 ◽  
Author(s):  
Lara Termini ◽  
Enrique Boccardo

In vitro culture of primary or established cell lines is one of the leading techniques in many areas of basic biological research. The use of pure or highly enriched cultures of specific cell types obtained from different tissues and genetics backgrounds has greatly contributed to our current understanding of normal and pathological cellular processes. Cells in culture are easily propagated generating an almost endless source of material for experimentation. Besides, they can be manipulated to achieve gene silencing, gene overexpression and genome editing turning possible the dissection of specific gene functions and signaling pathways. However, monolayer and suspension cultures of cells do not reproduce the cell type diversity, cell-cell contacts, cell-matrix interactions and differentiation pathways typical of the three-dimensional environment of tissues and organs from where they were originated. Therefore, different experimental animal models have been developed and applied to address these and other complex issues in vivo. However, these systems are costly and time consuming. Most importantly the use of animals in scientific research poses moral and ethical concerns facing a steadily increasing opposition from different sectors of the society. Therefore, there is an urgent need for the development of alternative in vitro experimental models that accurately reproduce the events observed in vivo to reduce the use of animals. Organotypic cultures combine the flexibility of traditional culture systems with the possibility of culturing different cell types in a 3D environment that reproduces both the structure and the physiology of the parental organ. Here we present a summarized description of the use of epithelial organotypic for the study of skin physiology, human papillomavirus biology and associated tumorigenesis.


Author(s):  
Anja Trillhaase ◽  
Marlon Maertens ◽  
Zouhair Aherrahrou ◽  
Jeanette Erdmann

AbstractStem cell technology has been around for almost 30 years and in that time has grown into an enormous field. The stem cell technique progressed from the first successful isolation of mammalian embryonic stem cells (ESCs) in the 1990s, to the production of human induced-pluripotent stem cells (iPSCs) in the early 2000s, to finally culminate in the differentiation of pluripotent cells into highly specialized cell types, such as neurons, endothelial cells (ECs), cardiomyocytes, fibroblasts, and lung and intestinal cells, in the last decades. In recent times, we have attained a new height in stem cell research whereby we can produce 3D organoids derived from stem cells that more accurately mimic the in vivo environment. This review summarizes the development of stem cell research in the context of vascular research ranging from differentiation techniques of ECs and smooth muscle cells (SMCs) to the generation of vascularized 3D organoids. Furthermore, the different techniques are critically reviewed, and future applications of current 3D models are reported. Graphical abstract


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Yick W Fong ◽  
Jaclyn J Ho ◽  
Carla Inouye ◽  
Robert Tjian

Acquisition of pluripotency is driven largely at the transcriptional level by activators OCT4, SOX2, and NANOG that must in turn cooperate with diverse coactivators to execute stem cell-specific gene expression programs. Using a biochemically defined in vitro transcription system that mediates OCT4/SOX2 and coactivator-dependent transcription of the Nanog gene, we report the purification and identification of the dyskerin (DKC1) ribonucleoprotein complex as an OCT4/SOX2 coactivator whose activity appears to be modulated by a subset of associated small nucleolar RNAs (snoRNAs). The DKC1 complex occupies enhancers and regulates the expression of key pluripotency genes critical for self-renewal in embryonic stem (ES) cells. Depletion of DKC1 in fibroblasts significantly decreased the efficiency of induced pluripotent stem (iPS) cell generation. This study thus reveals an unanticipated transcriptional role of the DKC1 complex in stem cell maintenance and somatic cell reprogramming.


2011 ◽  
Vol 2011 ◽  
pp. 1-18 ◽  
Author(s):  
Chad M. Teven ◽  
Xing Liu ◽  
Ning Hu ◽  
Ni Tang ◽  
Stephanie H. Kim ◽  
...  

Stem cells are characterized by their capability to self-renew and terminally differentiate into multiple cell types. Somatic or adult stem cells have a finite self-renewal capacity and are lineage-restricted. The use of adult stem cells for therapeutic purposes has been a topic of recent interest given the ethical considerations associated with embryonic stem (ES) cells. Mesenchymal stem cells (MSCs) are adult stem cells that can differentiate into osteogenic, adipogenic, chondrogenic, or myogenic lineages. Owing to their ease of isolation and unique characteristics, MSCs have been widely regarded as potential candidates for tissue engineering and repair. While various signaling molecules important to MSC differentiation have been identified, our complete understanding of this process is lacking. Recent investigations focused on the role of epigenetic regulation in lineage-specific differentiation of MSCs have shown that unique patterns of DNA methylation and histone modifications play an important role in the induction of MSC differentiation toward specific lineages. Nevertheless, MSC epigenetic profiles reflect a more restricted differentiation potential as compared to ES cells. Here we review the effect of epigenetic modifications on MSC multipotency and differentiation, with a focus on osteogenic and adipogenic differentiation. We also highlight clinical applications of MSC epigenetics and nuclear reprogramming.


Development ◽  
1992 ◽  
Vol 116 (Supplement) ◽  
pp. 157-165 ◽  
Author(s):  
R. S. P. Beddington ◽  
P. Rashbass ◽  
V. Wilson

Mouse embryos that are homozygous for the Brachyury (T) deletion die at mid-gestation. They have prominent defects in the notochord, the allantois and the primitive streak. Expression of the T gene commences at the onset of gastrulation and is restricted to the primitive streak, mesoderm emerging from the streak, the head process and the notochord. Genetic evidence has suggested that there may be an increasing demand for T gene function along the rostrocaudal axis. Experiments reported here indicate that this may not be the case. Instead, the gradient in severity of the T defect may be caused by defective mesoderm cell movements, which result in a progressive accumulation of mesoderm cells near the primitive streak. Embryonic stem (ES) cells which are homozygous for the T deletion have been isolated and their differentiation in vitro and in vivo compared with that of heterozygous and wild-type ES cell lines. In +/+ ↔ T/T ES cell chimeras the Brachyury phenotype is not rescued by the presence of wild-type cells and high level chimeras show most of the features characteristic of intact T/T mutants. A few offspring from blastocysts injected with T/T ES cells have been born, several of which had greatly reduced or abnormal tails. However, little or no ES cell contribution was detectable in these animals, either as coat colour pigmentation or by isozyme analysis. Inspection of potential +/+ ↔ T/T ES cell chimeras on the 11th or 12th day of gestation, stages later than that at which intact T/T mutants die, revealed the presence of chimeras with caudal defects. These chimeras displayed a gradient of ES cell colonisation along the rostrocaudal axis with increased colonisation of caudal regions. In addition, the extent of chimerism in ectodermal tissues (which do not invaginate during gastrulation) tended to be higher than that in mesodermal tissues (which are derived from cells invaginating through the primitive streak). These results suggest that nascent mesoderm cells lacking the T gene are compromised in their ability to move away from the primitive streak. This indicates that one function of the T genemay be to regulate cell adhesion or cell motility properties in mesoderm cells. Wild-type cells in +/+ ↔ T/T chimeras appear to move normally to populate trunk and head mesoderm, suggesting that the reduced motility in T/T cells is a cell autonomous defect


Sign in / Sign up

Export Citation Format

Share Document