scholarly journals Functional performance of a vertical-shaft centrifugal palm nut cracker

2010 ◽  
Vol 56 (No. 2) ◽  
pp. 77-83 ◽  
Author(s):  
M.C. Ndukwu ◽  
S.N. Asoegwu

A vertical-shaft centrifugal palm nut cracker was presented and evaluated. The cracker efficiency and kernel breakage ratio are some of the most important parameters for evaluating the cracker performance. From the result of this work, the two parameters are function of cracking speed, moisture content and feed rate. The result showed that for the lowest speed of 1,650 r/min, and the highest feed rate of 880 kg/h and for all moisture contents, the cracking efficiency was not up to 65%, therefore the efficiency increases with an increase in machine speed and a decrease in feed rate. The kernel breakage ratio ranged from 0–0.18 (0–18%) for all feed rates and moisture contents. It increased with moisture content and cracking speed, but decreased with feed rate. All the parameters determined have a linear relationship with moisture content.  

Author(s):  
Macmanus NDUKWU ◽  
Gabriel AFAM ◽  
Nnaemeka NWAKUBA

A motorized, manual fed cassava root chipping machine was developed, evaluated and optimized. The objective of the research is to investigate the effect of moisture content and speed on the chipping sizes, efficiency, throughput and machine capacities. Obtained results showed that the cassava initial moisture content significantly affected the chipping size, machine capacity, throughput capacity and chipping efficiency within the tested moisture content range of 52 to 68% w.b. The machine speed also affected the chipping size, chipping efficiency, machine and throughput capacity. The average chipping size for the cassava chips at the four ranges of moisture content, speeds and constant feed rate of 89±26.6 kg h-1 ranged from 0.56 to 0.96 cm with optimum thickness 0.618 at 450 rpm and moisture content of 65.27% based on desirability factor. The average chipping efficiency ranged from 60 to 90% with an optimum value of 79.57% at 533 rpm and moisture content of 68 % while the throughput capacities of the machine ranged from 49 to118 kg/h with optimum value of 118 kg/h at a speed of 600 rpm and 68% moisture content.


Author(s):  
A. Musa ◽  
O. A. Adetola ◽  
O. J. Olukunle ◽  
A. M. Akintade

Roasting of groundnut is essential to ensure quality improvement, easy handling, safe storage, further processing, and value addition of the product. Therefore, the aim of the study was modified and optimized a groundnut roasting machine. Standard design parameters were used for the design modification. The design of the experiment had 27 runs. Machine speed (6.60, 12.80 and 19 rpm), roasting temperature (120, 160 and 200℃), and feed rate (120, 180 and 240 kg/h) were used as independent parameters, and the response variables include the moisture content of the groundnut, roasting efficiency, mechanical damage, throughput and quality efficiency of the machine. Response Surface Methodology (RSM) of the Design Expert Version 11 was adopted for the optimization process by applying the central composite design method for the Analysis of Variance (ANOVA) and optimized responses within the limit of the independent factors tested. Roasting temperature (200℃), machine speed (19 rpm) and feed rate (240 kg/h) were found as the optimum operational conditions which will optimally result in the optimal machine performance of 8.76% moisture content (r2 = 0.94), 76.99% roasting efficiency (r2 = 0.90), 2.46% mechanical damage (r2 = 0.86), 62.32 kg/h machine throughput (r2 = 0.98), 74.3% quality performance efficiency (r2 = 0.86) with the high desirability of 88%. An increase in machine speed increased the moisture content of the groundnut, roasting efficiency, mechanical damage, throughput, and quality efficiency of the machine. The study showed the optimal machine parameters for a groundnut roasting machine.


2021 ◽  
Vol 2 (2) ◽  
pp. 413-424
Author(s):  
Adewale SEDARA ◽  
Emmanuel ODEDİRAN

The research was carried out to optimize parameters for evaluating an improved motorize maize sheller. Statistical analysis was performed using response surface methodology (RSM) with 3 by 3 factorial experiment with 3 replicates. The three parameters are speed (850 rpm, 950 rpm and 1100 rpm), moisture content (12, 15, and 17%) and feed rate (120 kg h-1, 130 kg h-1 and 140 kg h-1) used to illustrate the ability of the machine to shell maize (throughput capacity, shelling rate and machine efficiency). Results obtained showed that for optimum throughput capacity of 630.97 kg h-1; shelling rate 485.34 kg h-1 and machine efficiency 93.86% of the machine; is maximum for 129.6 kg h-1 feed rate and moisture content 16.49% and machine speed of 1026.9 rpm. The machine can be used on commercial farms with these operational results.


2021 ◽  
Vol 2 (2) ◽  
pp. 413-424
Author(s):  
Adewale SEDARA ◽  
Emmanuel ODEDİRAN

The research was carried out to optimize parameters for evaluating an improved motorize maize sheller. Statistical analysis was performed using response surface methodology (RSM) with 3 by 3 factorial experiment with 3 replicates. The three parameters are speed (850 rpm, 950 rpm and 1100 rpm), moisture content (12, 15, and 17%) and feed rate (120 kg h-1, 130 kg h-1 and 140 kg h-1) used to illustrate the ability of the machine to shell maize (throughput capacity, shelling rate and machine efficiency). Results obtained showed that for optimum throughput capacity of 630.97 kg h-1; shelling rate 485.34 kg h-1 and machine efficiency 93.86% of the machine; is maximum for 129.6 kg h-1 feed rate and moisture content 16.49% and machine speed of 1026.9 rpm. The machine can be used on commercial farms with these operational results.


Author(s):  
F. Seehofer ◽  
W. Schulz

AbstractThe phenomenon of the smoulder stream flowing through the cigarette during smouldering and during the puff intervals is demonstrated for the first time and its dependence upon physical conditions is examined. The volume of the smoulder stream can amount up to 180 ml per cigarette. Increasing draw resistance of the cigarette and augmenting moisture content of the tobacco as well as perforation of the cigarette paper have a decreasing effect on volume and velocity of the smoulder stream. The porosity of the cigarette paper has no perceptible influence. The spatial position of the cigarette affects volume and velocity of the smoulder stream. The influence exercised by the smoulder stream on the yields of total condensate, nicotine, phenols, aldehydes, and acroleine when the cigarette tip is open during the puff intervals is determined. When the moisture contents of the tobacco were extremely high, yield decreases reaching 50 % could be observed.


1970 ◽  
Vol 26 (1) ◽  
pp. 16 ◽  
Author(s):  
S Balasubramanian ◽  
Rajkumar Rajkumar ◽  
K K Singh

Experiment to identify ambient grinding conditions and energy consumed was conducted for fenugreek. Fenugreek seeds at three moisture content (5.1%, 11.5% and 17.3%, d.b.) were ground using a micro pulverizer hammer mill with different grinding screen openings (0.5, 1.0 and 1.5 mm) and feed rate (8, 16 and 24 kg h-1) at 3000 rpm. Physical properties of fenugreek seeds were also determined. Specific energy consumptions were found to decrease from 204.67 to 23.09 kJ kg-1 for increasing levels of feed rate and grinder screen openings. On the other hand specific energy consumption increased with increasing moisture content. The highest specific energy consumption was recorded for 17.3% moisture content and 8 kg h-1 feed rate with 0.5 mm screen opening. Average particle size decreased from 1.06 to 0.39 mm with increase of moisture content and grinder screen opening. It has been observed that the average particle size was minimum at 0.5 mm screen opening and 8 kg h-1 feed rate at lower moisture content. Bond’s work index and Kick’s constant were found to increase from 8.97 to 950.92 kWh kg-1 and 0.932 to 78.851 kWh kg-1 with the increase of moisture content, feed rate and grinder screen opening, respectively. Size reduction ratio and grinding effectiveness of fenugreek seed were found to decrease from 4.11 to 1.61 and 0.0118 to 0.0018 with the increase of moisture content, feed rate and grinder screen opening, respectively. The loose and compact bulk densities varied from 219.2 to 719.4 kg m-3 and 137.3 to 736.2 kg m-3, respectively.  


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Hyeon W. Park ◽  
Jae W. Park ◽  
Won B. Yoon

AbstractNovel algorithm to determine the least cost formulation of a surimi blend was developed using linear programming (LP). Texture properties and the unit cost of surimi blend at the target moisture content were used as constraint functions and the objective function, respectively. The mathematical models to describe the moisture content dependence of the ring tensile properties were developed using critical moisture content, and the model parameters were used for the least cost LP (LCLP) model. The LCLP model successfully predicted the quality of surimi blend. Sensitivity analysis was used to obtain an additional information when the perturbations of design variables are provided. A standard procedure to determine the least cost formulation for blending surimi with varied moisture contents was systematically developed.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Gui-chen Li ◽  
Chong-chong Qi ◽  
Yuan-tian Sun ◽  
Xiao-lin Tang ◽  
Bao-quan Hou

The kinetics of fluid-solid coupling during immersion is an important topic of investigation in rock engineering. Two rock types, sandstone and mudstone, are selected in this work to study the correlation between the softening characteristics of the rocks and moisture content. This is achieved through detailed studies using scanning electron microscopy, shear tests, and evaluation of rock index properties during exposure to different moisture contents. An underground roadway excavation is simulated by dynamic finite element modeling to analyze the effect of moisture content on the stability of the roadway. The results show that moisture content has a significant effect on shear properties reduction of both sandstone and mudstone, which must thus be considered in mining or excavation processes. Specifically, it is found that the number, area, and diameter of micropores, as well as surface porosity, increase with increasing moisture content. Additionally, stress concentration is negatively correlated with moisture content, while the influenced area and vertical displacement are positively correlated with moisture content. These findings may provide useful input for the design of underground roadways.


2013 ◽  
Vol 807-809 ◽  
pp. 1648-1652
Author(s):  
Tie Jun Sun ◽  
Baderihu Tajilake

Experiment was executed to plant eco-grass of Bromus inermis Leyss on 15°bare slopes, and study effect of biological characters on dynamics of soil moisture contents. The results indicated that vegetation restored quickly on the bare slope after the eco-grass planted. There were 2473.4 kg/hm2 of overground biomass and 1744.1kg/hm2 of underground biomass, and 70% of underground biomass was in 0-10cm layer of soil. Meanwhile, there was a regulatory mechanism of soil moisture content for Bromus inermis Leyss. When rainfall was enough, soil moisture content in 0-80 cm layer could reach to the most of 26.83% quickly this year. Next it could decline near to the first value of 19.81% after rainfall stopped, and keep a dynamic balance between 19.48% and 19.96%. Moreover, the regulatory mechanism realized though underground biomass, and was clearer with underground biomass increasing, especially in the 0-40cm layer of soil.


Author(s):  
Julie Paprocki ◽  
Nina Stark ◽  
Hans C Graber ◽  
Heidi Wadman ◽  
Jesse E McNinch

A framework for estimating moisture content from satellite-based multispectral imagery of sandy beaches was tested under various site conditions and sensors. It utilizes the reflectance of dry soil and an empirical factor c relating reflectance and moisture content for specific sediment. Here, c was derived two ways: first, from in-situ measurements of moisture content and average NIR image reflectance; and second, from laboratory-based measurements of moisture content and spectrometer reflectance. The proposed method was tested at four sandy beaches: Duck, North Carolina, and Cannon Beach, Ocean Cape, and Point Carrew, Yakutat, Alaska. Both measured and estimated moisture content profiles were impacted by site geomorphology. For profiles with uniform slopes, moisture contents ranged from 3.0%-8.0% (Zone 1) and from 8.0%-23.0% (Zone 2). Compared to field measurements, the moisture contents estimated using c calibrated from in-situ and laboratory data resulted in percent error of 3.6%-44.7% and 2.7%-58.6%, respectively. The highest percent error occurred at the transition from Zone 1 to Zone 2. Generally, moisture contents were overestimated in Zone 1 and underestimated in Zone 2, but followed the expected trends based on field measurements. When estimated moisture contents in Zone 1 exceeded 10%, surface roughness, debris, geomorphology, and weather conditions were considered.


Sign in / Sign up

Export Citation Format

Share Document