Assessment of Moisture Content in Sandy Beach Environments from Multispectral Satellite Imagery

Author(s):  
Julie Paprocki ◽  
Nina Stark ◽  
Hans C Graber ◽  
Heidi Wadman ◽  
Jesse E McNinch

A framework for estimating moisture content from satellite-based multispectral imagery of sandy beaches was tested under various site conditions and sensors. It utilizes the reflectance of dry soil and an empirical factor c relating reflectance and moisture content for specific sediment. Here, c was derived two ways: first, from in-situ measurements of moisture content and average NIR image reflectance; and second, from laboratory-based measurements of moisture content and spectrometer reflectance. The proposed method was tested at four sandy beaches: Duck, North Carolina, and Cannon Beach, Ocean Cape, and Point Carrew, Yakutat, Alaska. Both measured and estimated moisture content profiles were impacted by site geomorphology. For profiles with uniform slopes, moisture contents ranged from 3.0%-8.0% (Zone 1) and from 8.0%-23.0% (Zone 2). Compared to field measurements, the moisture contents estimated using c calibrated from in-situ and laboratory data resulted in percent error of 3.6%-44.7% and 2.7%-58.6%, respectively. The highest percent error occurred at the transition from Zone 1 to Zone 2. Generally, moisture contents were overestimated in Zone 1 and underestimated in Zone 2, but followed the expected trends based on field measurements. When estimated moisture contents in Zone 1 exceeded 10%, surface roughness, debris, geomorphology, and weather conditions were considered.

2010 ◽  
Vol 19 (1) ◽  
pp. 29 ◽  
Author(s):  
A. P. Dimitrakopoulos ◽  
I. D. Mitsopoulos ◽  
K. Gatoulas

The objective of this study was the assessment of the probability of ignition and moisture of extinction of the annual herbaceous species Slender Oat (Avena barbata Pott. ex Link) in Greece. Multiple ignition tests were conducted in situ with a drip torch during two fire seasons, with simultaneous monitoring of the weather conditions. Stepwise logistic regression was applied to assess the probability of ignition based on plant moisture content and meteorological parameters. Fuel moisture content was determined to be the only statistically significant (P < 0.0001) parameter and, therefore, it was the only variable kept in the analysis. The logistic model correctly predicted fire ignition in 93.6% of the tests and 50% ignition probability was determined at 38.5% oven-dried weight (ODW) plant moisture content. Moisture of extinction (i.e. probability of ignition at 1%) was calculated at 55.5% ODW. Furthermore, classification tree analysis was applied to determine the independent variables that explain the variability in ignition probability. Wind speed was found to have an effect on ignition probability only at relatively high (>30% ODW) fuel moisture contents. Assessment of the ignition potential and moisture of extinction of grass fuels is a prerequisite for reliable fire danger prediction.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Junhui Wang ◽  
Zhijun Wan ◽  
Yi Wang ◽  
Zhixiang Liu ◽  
Sifei Liu ◽  
...  

Hydraulic fracturing and premining gas drainage are important to safe mining and coalbed methane extraction. These technical processes cause the redistribution of in-situ stress and the regional variation of moisture contents within the affected zone. Therefore, we investigated the coupled effect of variable stresses (from 9 MPa to 27 MPa) and moisture contents (from 0.22% to 4.00%) on the permeability evolution of gas-saturated raw coal. The results show that (1) the relationship between the mean effective stress and the permeability can be described by a power function according to the permeability evolution model of the porous matrix established in this study. Besides, the influence mechanisms of moisture on fitting coefficients in the function were analyzed. (2) The permeability decreases with the increase of in-situ stress (e.g., confining pressure or volumetric stress) in a negative exponential manner. (3) The curves of permeability variations with moisture content are not always linear, and the permeability is more sensitive to the moisture content than the volumetric stress in the test range. Moreover, the sensitivity of permeability varies in different regions. These results would be beneficial for permeability prediction and surface well parameters design.


1986 ◽  
Vol 64 (5) ◽  
pp. 988-996 ◽  
Author(s):  
U. Matthes-Sears ◽  
T. H. Nash III ◽  
D. W. Larson

Diurnal courses of gross CO2 uptake and thallus water content of the lichen Ramalina menziesii Tayl. were measured together with the environmental variables temperature, irradiance, and atmospheric humidity at a coastal and an inland site in central California. Twenty-three days, distributed over all seasons and a variety of weather conditions, were recorded at the inland site; 14 were recorded at the coastal site. Conditions in both habitats were similar in that the most frequent reason for photosynthetic inactivity in R. menziesii was insufficient thallus hydration. Irradiance was another factor controlling photosynthetic rates; temperature, on the other hand, had little influence. At the inland site, CO2 fixation was concentrated in the rainy winter season and very little CO2 fixation took place during the hot summers. In contrast, fog and high atmospheric humidity that frequently occur during summers at the coast provided sufficient moisture for frequent photosynthetic activity, thus resulting in intermittent activity throughout the year. While extremely high gross photosynthetic rates of up to 15 mg CO2 g−1 thallus dry weight were measured at the inland site, rates at the coast were always much lower.


1919 ◽  
Vol 9 (4) ◽  
pp. 400-415 ◽  
Author(s):  
Bernard A. Keen

An examination has been made of some of the extensive experimental data obtained by Bouyoucos and his associates on the freezing-point depression of soil solution at varying moisture contents, examined in situ.These workers find that the soil solution in quartz sand and extreme types of sandy soil obeys approximately the same law as dilute solutions—the freezing-point depression varying as the concentration, or in the present case, inversely as the moisture content. In other wordswhere K is a constant, and Dn is the freezing-point depression, at a moisture content of Mn. Soils do not obey this law, the freezing-point depression rapidly increasing as the moisture content decreases.


1972 ◽  
Vol 52 (3) ◽  
pp. 323-336 ◽  
Author(s):  
C. A. CAMPBELL ◽  
V. O. BIEDERBECK

Wood Mountain loam was wetted with water, (NH4)2SO4, and peptone solutions to provide 22, 14, and 10% moisture while adding 0 and 50 ppm N. These treatments were incubated for 14 days at T13/2 (i.e., 13 C day, and 2 C night), T18/7, T24/13, and T27/16 to simulate soil conditions in the top 15 cm in May, June, July, and August. Progressive seasonal temperature change was simulated by transferring other replicates from T13/2 to T18/7; from T18/7 to T24/13; from T24/13 to T27/16; and from T27/16 to T18/7 for another 14 days. Field measurements were used to test the validity of the simulation. In the unamended soil there was no nitrification at T13/2, but there was where peptone or (NH4)2SO4 was added. Generally, nitrification and mineralization were directly proportional to temperature and to moisture content. In the first 14 days nitrification (ppm) = 6 + 1.4 temperature (C); the Q10 coefficient was 1.7. Mineralization at T18/7 following T27/16 (September) was much greater than at T18/7 following T13/2 (May). Addition of (NH4)2SO4 caused priming of indigenous organic-N. The simulation study indicated that fallow soil at 22, 14, and 10% moisture would produce 90, 60, and 50 ppm nitrate-N between the beginning of May and mid-September. Field sites with average moisture contents of 24.5 and 15.5% were found to produce at least 104 and 41 ppm during the same period.


2006 ◽  
Vol 54 (4) ◽  
pp. 425-430
Author(s):  
T. Árendás ◽  
L. C. Marton ◽  
P. Bónis ◽  
Z. Berzsenyi

The effect of varying weather conditions on the moisture content of the maize grain yield was investigated in Martonvásár, Hungary from late August to late September, and from the 3rd third of September to the 1st third of Novemberbetween 1999 and 2002. In every year a close positive correlation (P=0.1%) could be observed between the moisture content in late September and the rate of drying down in October. Linear regression was used each year to determine the equilibrium moisture content, to which the moisture content of kernels returned if they contained less than this quantity of water in late September and harvesting was delayed. In the experimental years this value ranged from 15.24-19.01%.


Author(s):  
F. Seehofer ◽  
W. Schulz

AbstractThe phenomenon of the smoulder stream flowing through the cigarette during smouldering and during the puff intervals is demonstrated for the first time and its dependence upon physical conditions is examined. The volume of the smoulder stream can amount up to 180 ml per cigarette. Increasing draw resistance of the cigarette and augmenting moisture content of the tobacco as well as perforation of the cigarette paper have a decreasing effect on volume and velocity of the smoulder stream. The porosity of the cigarette paper has no perceptible influence. The spatial position of the cigarette affects volume and velocity of the smoulder stream. The influence exercised by the smoulder stream on the yields of total condensate, nicotine, phenols, aldehydes, and acroleine when the cigarette tip is open during the puff intervals is determined. When the moisture contents of the tobacco were extremely high, yield decreases reaching 50 % could be observed.


1982 ◽  
Vol 14 (3) ◽  
pp. 33-39
Author(s):  
C Y Kuo

An existing, three-dimensional, Eulerian-Lagrangian finite-difference model was modified and used to examine the far-field transport processes of dumped sewage sludge in the New York Bight. Both in situ and laboratory data were utilized in an attempt to approximate model inputs such as mean current speed, vertical and horizontal diffusion coefficients, particle size distributions, and specific gravities. Concentrations of the sludge near the sea surface predicted from the computer model were compared qualitatively with those remotely sensed.


1998 ◽  
Vol 37 (1) ◽  
pp. 155-162
Author(s):  
Flemming Schlütter ◽  
Kjeld Schaarup-Jensen

Increased knowledge of the processes which govern the transport of solids in sewers is necessary in order to develop more reliable and applicable sediment transport models for sewer systems. Proper validation of these are essential. For that purpose thorough field measurements are imperative. This paper renders initial results obtained in an ongoing case study of a Danish combined sewer system in Frejlev, a small town southwest of Aalborg, Denmark. Field data are presented concerning estimation of the sediment transport during dry weather. Finally, considerations on how to approach numerical modelling is made based on numerical simulations using MOUSE TRAP (DHI 1993).


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 564
Author(s):  
Vladimir Čebašek ◽  
Veljko Rupar ◽  
Stevan Đenadić ◽  
Filip Miletić

The bucket-wheel dredge “Kovin I” for underwater coal mining with bucket-wheel type UCW-450 has been in operation for over 20 years. Based on analyzing the bucket-wheel dredger performance, productivity, maintenance costs, and reliability, a rational decision was made: to rehabilitate the most essential parts of the dredge, including the bucket wheel and the gearbox. However, the selection and construction of the excavator parts were performed on the ground of available laboratory data for digging resistance. The data itself was determined by the testing methodology that did not include the influence of surrounding water pressure at a certain depth of mining. According to the previous findings, it was necessary to develop a specific research and testing program that would involve appropriate laboratory testing of the geomechanical parameters. These were to represent the influence of hydrostatic water pressure on the working environment—coal. Nevertheless, geomechanical laboratory research tests were initially modified to provide reliable data of cutting resistance, especially in the water under different hydrostatic pressures, fully simulating the “in situ” working conditions of mining, i.e., cutting.


Sign in / Sign up

Export Citation Format

Share Document