scholarly journals The interaction of salinity and chromium in the influence of barley growth and oxidative stress

2011 ◽  
Vol 57 (No. 4) ◽  
pp. 153-159 ◽  
Author(s):  
S. Ali ◽  
F. Zeng ◽  
S. Cai ◽  
B. Qiu ◽  
G. Zhang

The effect of chromium and NaCl on growth and anti-oxidative enzymes in two barley genotypes differing in salt tolerance was investigated in a hydroponic experiment. Salinity stress reduced plant growth, photosynthetic rate and stomatal conductance, while increased SOD and POD activities, and MDA content in barley plants. CM72, a salt-tolerant genotype was less affected by salinity stress than Gairdner, a salt-sensitive genotype. The effect of Cr on plant growth and anti-oxidative enzymes varied with Cr level. Under low Cr level (10 µmol), plant growth inhibition and oxidative stress caused by salinity stress were generally alleviated, in particular for Garidner. The combined stress of high Cr level (50 µmol) and NaCl stress caused more severe oxidative stress, resulting in further reduction of plant growth parameters, photosynthetic rate and stomatal conductance as compared to two stresses alone.

2011 ◽  
Vol 6 (6) ◽  
pp. 1054-1063 ◽  
Author(s):  
Shahid Umar ◽  
Iram Diva ◽  
Naser Anjum ◽  
Muhammad Iqbal ◽  
Iqbal Ahmad ◽  
...  

AbstractSalinity is an important abiotic factor that adversely affects major agricultural soils of the world and hence limits crop productivity. An optimum mineral-nutrient status of plants plays critical role in determining plant tolerance to various stresses. A pot experiment was conducted on mustard (Brassica campestris L.) to study the protective role of added potassium (K, 40 mg kg−1 soil) against salinity-stress (0, 40 and 80 mM NaCl)-induced changes in plant growth, photosynthetic traits, ion accumulation, oxidative stress, enzymatic antioxidants and non-enzymatic antioxidants at 30 days after sowing. Increasing NaCl levels decreased the growth, photosynthetic traits and the leaf ascorbate and glutathione content but increased the leaf ion accumulation and oxidative stress, and the activity of antioxidant enzymes. In contrast, K-nutrition improved plant growth, photosynthetic traits, activity of antioxidant enzymes and the ascorbate and glutathione content, and reduced ion accumulation and oxidative stress traits in the leaves, more appreciably at 40 mM than at 80 mM NaCl. The study illustrates the physiological and biochemical basis of K-nutrition-induced NaCl tolerance in mustard as a means to achieving increased crop productivity in a sustainable way.


Author(s):  
Arif Majid ◽  
Bilal Rather ◽  
Asim Masood ◽  
Nafees Khan

The present study assessed the effect of abscisic acid (ABA; 25 µM) and/or nitrogen (N; 10 mM) in minimization of salinity (NaCl; 100mM)-impact on growth, photosynthetic efficiency, Rubisco activity, nitrogen and sulfur assimilation, oxidative stress (H2O2), lipid peroxidation measured as thiobarbituric acid reactive substances, (TBARS), osmolyte (Proline) content, and the activity of antioxidant enzymes (superoxide dismutase, SOD glutathione reductase, GR; ascorbate peroxidase, APX) in cultivar RH0-749 of Brassica juncea L. NaCl stress caused significant elevations in H2O2 and TBARS, and differentially modulated proline content, the activity of antioxidant enzymes, and impaired growth and photosynthetic functions. Exogenously applied 25 µM ABA negatively affected plant growth and photosynthesis in B. juncea without NaCl. In contrast, exogenously applied 25 µM ABA and 10 mM N, alone or in combination minimized oxidative stress, and maintained a fine-tuning between proline content and the activity of antioxidant enzymes, and thereby improved plant growth and photosynthetic functions in NaCl exposed B. juncea.


2020 ◽  
Vol 71 (7) ◽  
pp. 2339-2350 ◽  
Author(s):  
Haruki Kimura ◽  
Mimi Hashimoto-Sugimoto ◽  
Koh Iba ◽  
Ichiro Terashima ◽  
Wataru Yamori

Abstract It has been reported that stomatal conductance often limits the steady-state photosynthetic rate. On the other hand, the stomatal limitation of photosynthesis in fluctuating light remains largely unknown, although in nature light fluctuates due to changes in sun position, cloud cover, and the overshadowing canopy. In this study, we analysed three mutant lines of Arabidopsis with increased stomatal conductance to examine to what extent stomatal opening limits photosynthesis in fluctuating light. The slac1 (slow anion channel-associated 1) and ost1 (open stomata 1) mutants with stay-open stomata, and the PATROL1 (proton ATPase translocation control 1) overexpression line with faster stomatal opening responses exhibited higher photosynthetic rates and plant growth in fluctuating light than the wild-type, whereas these four lines showed similar photosynthetic rates and plant growth in constant light. The slac1 and ost1 mutants tended to keep their stomata open in fluctuating light, resulting in lower water-use efficiency (WUE) than the wild-type. However, the PATROL1 overexpression line closed stomata when needed and opened stomata immediately upon irradiation, resulting in similar WUE to the wild-type. The present study clearly shows that there is room to optimize stomatal responses, leading to greater photosynthesis and biomass accumulation in fluctuating light in nature.


2021 ◽  
Vol 11 (5) ◽  
pp. 13141-13154

Due to climate change, salinity has become a limiting factor for many leguminous crops. Therefore, we have explored the comparative study of salt-tolerant plant growth-promoting rhizobacteria (PGPR) for the promotion of plant growth. These PGPR (Bacillus subtilis RhStr_71, Bacillus safensis RhStr_223, and Bacillus cereus RhStr_JH5) were in vitro screened for plant growth-promoting (PGP) traits such as IAA, P-solubilization, siderophore, and ammonia production. They were further selected to evaluate the maximum NaCl tolerant level (MTL). Selected salt-tolerant PGP bacteria were further characterized to evaluate their PGP activity on seedlings of Pisum sativum under 1% NaCl stress. They were further selected to perform the greenhouse experiments under 1% NaCl stress to compare these isolates on morphological (like plant height and weight) and biochemical parameters(such as carbohydrate, reducing sugar, protein, phenol, flavonoids, chlorophylls, and carotenoids). In a pot experiment, NaCl significantly reduced the plant growth parameters compared to un-inoculated and inoculated. Additional analysis also had shown that these strains also enhanced the antioxidant enzymes, thereby preventing oxidative damage caused due to reactive oxygen species (ROS). The result revealed that these salt-tolerant PGP bacteria exert their beneficial effects on plant growth and play a necessary role in attenuating the salinity stress in agriculture.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2133 ◽  
Author(s):  
Raluca Cicevan ◽  
Mohamad Al Hassan ◽  
Adriana F. Sestras ◽  
Jaime Prohens ◽  
Oscar Vicente ◽  
...  

Drought tolerance was evaluated in twelve cultivars of three ornamentalTagetesspecies (T. patula,T. tenuifoliaandT. erecta). A stress treatment was performed by completely stopping watering of plants maintained in controlled greenhouse conditions. After three weeks, several plant growth parameters (stem length (SL), fresh weight (FW) and water content (WC)), photosynthetic pigments (chlorophylls and carotenoids (Car)), osmolytes (proline (Pro), glycine betaine (GB) and total soluble sugars (TSS)), an oxidative stress maker (malondialdehyde (MDA)) and antioxidants (total phenolic compounds (TPC) and total flavonoids (TF)) were measured. Considerable differences in the evaluated traits were found among the control and drought-stressed plants. Drought stress generally caused a marked reduction in plant growth and carotenoid pigments, and an increase in soluble solutes and oxidative stress. For most cultivars, proline levels in stressed plants increased between 30 and 70-fold compared to the corresponding controls. According to the different measured parameters, on averageT. erectaproved to be more tolerant to drought thanT. patulaandT. tenuifolia. However, a considerable variation in the tolerance to drought was found within each species. The traits with greater association to drought tolerance as well as the most tolerant cultivars could be clearly identified in a principal components analysis (PCA). Overall, our results indicate that drought tolerant cultivars ofTagetescan be identified at early stages using a combination of plant growth and biochemical markers.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1687
Author(s):  
Pharada Rangseekaew ◽  
Adoración Barros-Rodríguez ◽  
Wasu Pathom-aree ◽  
Maximino Manzanera

Soil salinity is an enormous problem affecting global agricultural productivity. Deep-sea actinobacteria are interesting due to their salt tolerance mechanisms. In the present study, we aim to determine the ability of deep-sea Dermacoccus (D. barathri MT2.1T and D. profundi MT2.2T) to promote tomato seedlings under 150 mM NaCl compared with the terrestrial strain D. nishinomiyaensis DSM20448T. All strains exhibit in vitro plant growth-promoting traits of indole-3-acetic acid production, phosphate solubilization, and siderophore production. Tomato seedlings inoculated with D. barathri MT2.1T showed higher growth parameters (shoot and root length, dry weight, and chlorophyll content) than non-inoculated tomato and the terrestrial strain under 150 mM NaCl. In addition, hydrogen peroxide (H2O2) in leaves of tomatoes inoculated with deep-sea Dermacoccus was lower than the control seedlings. This observation suggested that deep-sea Dermacoccus mitigated salt stress by reducing oxidative stress caused by hydrogen peroxide. D. barathri MT2.1T showed no harmful effects on Caenorhabditis elegans, Daphnia magna, Eisenia foetida, and Escherichia coli MC4100 in biosafety tests. This evidence suggests that D. barathri MT2.1T would be safe for use in the environment. Our results highlight the potential of deep-sea Dermacoccus as a plant growth promoter for tomatoes under salinity stress.


2020 ◽  
Author(s):  
Lubna Lubna ◽  
Muhammad Aaqil Khan ◽  
Sajjad Asaf ◽  
Rehmatullah Jan ◽  
Muhammad Waqas ◽  
...  

Abstract Background Salinity stress is one of the most devastating environmental stress that inhibits plants growth and development. Many strategies including plant growth promoting fungi have been reported to mitigate salt stress. Results In this study, we adopted environmental friendly technique and screened different plant growth promoting fungi for different PGP traits and salinity stress. Among these isolate CSL1 were selected based on the basis of plant growth promoting characteristics producing IAA, GAs, organic acid and tolerance to NaCl stress. Furthermore, inoculation of fungal isolate CSL1 significantly increased shoot length (16%), root length (37%), shoot fresh and dry weight (19% and 25%), root fresh and dry weight (47 and 51%) and chlorophyll content (24%) under NaCl stress (200 mM). Endogenous ABA level (0.77 folds) were significantly decreased while SA contents (16%) were increase in CSL1 inoculated plants under NaCl stress. Similarly, higher level of antioxidants such as MDA (2 folds), SOA (29%), POD (8 folds) and PPO (3 folds) was observed in NaCl treated non-inoculated plants. ICP analysis showed an increase in Na+ (11 folds) and decrease in K+ content (15%). Furthermore, CSL-1 inoculation improved soybean adaptability against NaCl stress and a significant decrease in GmFDL19 expression (5 folds) GmNARK (4 folds) and GmSIN1 (3 folds) was observed. However, higher expression of GmAKT2 (15%) were observed in CSL-1 treated plants. Conclusion Fungal isolate CSL-1 have capability to mitigate salinity stress in soybean, increase plant growth and could be used as valuable ecofriendly microorganism resource, low cost based biotechnological approach for sustainable agriculture in salt affected areas.


Genetika ◽  
2016 ◽  
Vol 48 (1) ◽  
pp. 233-248
Author(s):  
R. El-Bakatoushi ◽  
A. Elframawy

Plant growth and the expression of two transporter genes; PoHKT1 and PoVHA transcripts in root and shoot tissues were studied under salt stress of three Portulaca oleracea s.l. taxa. The study showed no significant differences in ratios between root lengths in saline and non-saline treatments of the three taxa, which was correlated with a clear down-regulation of the PoHKT1 transcripts in the root after 150mM NaCl. All measured growth parameters except root length increased in P. oleraceae, decreased in P. granulatostellulata and remain unchanged after 100mM NaCl in P. nitida compared to control under saline conditions. The result was consistent with the type of taxon which had significant effect on the shoot length, number of leaves and dry weight (P< 0.05). All measured growth parameters except root length showed a significant negative correlation with the shoot fold change of PoHKT1 transcripts (r = -0.607, -0.693 and -0.657 respectively). The regulation of PoVHA in root and shoot tissues in the three taxa are significantly different. Under salt stress, both decreased uptake of Na+ into the cytosol by decreasing the expression of PoHKT1 and increased vascular compartmentalization ability of Na+ by inducing the expression of PoVHA seem to work more efficiently in P. oleraceae and P. nitida than in P. granulato-stellulata.


2019 ◽  
Vol 18 (1) ◽  
pp. 141-149
Author(s):  
Irena Januškaitienė ◽  
Sandra Sakalauskienė

This work aimed to underline the dynamics of photosynthetic and oxidative stress parameters of ‘Matador’ and ‘Andromeda’ spinach species after short-term 1 and 2 kJm–2 UV-B radiation effect. When plants reached 3–4 leaves growths stage, the exposure to 1 kJm–2 and 2 kJm–2 UV-B radiation was done once for 68 and 136 minutes, respectively. The photosynthetic and oxidative stress parameters were determined 2, 24, 48 and 72 hours after exposure. The stimulating effect of UV-B emerged on the 3rd day after exposure. The positive effect of UV-B was more pronounced for ‘Matador’. The highest DPPH radical-scavenging capacity and the highest concentration of α-tocopherols were detected 24 hours after 2 kJ UV-B exposure, but the decrease in photosynthetic rate was the highest as well. Meanwhile, on the 3rd day after 1 kJ UV-B exposure, the indicators of oxidative stress of ‘Matador’ decreased, and the photosynthetic rate increased. This study highlights that low UV-B radiation acts as an eustress, by awaking positive changes in photosynthetic and oxidative stress parameters of spinach.


Sign in / Sign up

Export Citation Format

Share Document