scholarly journals The relationship of antioxidant enzymes and some physiological parameters in maize during chilling

2011 ◽  
Vol 50 (No. 1) ◽  
pp. 27-32 ◽  
Author(s):  
T. Takáč

The changes in some physiological parameters of maize seedlings in response to chilling were studied. The emphasis was laid upon their relationship to chilling induced alterations in antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase) activity. The exposure of maize seedlings to chilling caused substantial defects in the 4-day-old seedlings and the seedlings with two fully developed leaves, respectively. The membrane semipermeability perturbations and the loss of viability in the young seedlings were observed. Similarly, we found a decrease of chlorophyll content, appearance of necrotic lesions and inhibition of growth in older plants. The measurements of superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase activities provide an evidence of reactive oxygen species formation, that is assumed to be a reason of the found damages. Significant differences between two cultivars were found in the studied parameters. The electrolyte leakage and viability test provided effective methods for the characterization of the chilling tolerance-level in maize cultivars.

1998 ◽  
Vol 25 (6) ◽  
pp. 665 ◽  
Author(s):  
María E. Comba ◽  
María P. Benavides ◽  
María L. Tomaro

The antioxidant defence systems of soybean (Glycine max (L.) Merr) nodules responded differently to 50 and 200 mM NaCl. At 50 mM NaCl, leghaemoglobin content and nitrogenase activity remained unaltered but there was an overall increase in the antioxidant enzymes (ascorbate peroxidase, catalase, glutathione reductase and superoxide dismutase) and in reduced glutathione. After returning the salinised nodules to a non-saline environment (recovery), the enzymatic activities returned to the initial values but reduced glutathione remained high with respect to the controls measured at the end of the experiment (final controls). Severe salt treatment reduced the leghaemoglobin content and nitrogenase activity by 31% and 50%, respectively. Ascorbate peroxidase, catalase and glutathione reductase activities decreased between 30 and 100% while superoxide dismutase and reduced glutathione increased over the controls by 19% and 30% respectively. After recovery, glutathione reductase increased over the final controls and reduced glutathione remained as under 50 mM NaCl. Malondialdehyde content and total protein remained unchanged in nodules treated with the two salt concentrations. These results suggest that under mild saline stress, the elevated levels of the antioxidant enzymes and reduced glutathione protect nodules against the activated oxygen species thus avoiding lipid and protein peroxidation, and leghaemoglobin breakdown. However, severe saline treatment produced an irreversible decay in the leghaemoglobin content and nitrogenase activity despite the high reduced glutathione level and glutathione reductase activity.


2014 ◽  
Vol 2 ◽  
Author(s):  
Saule Saduakhasova ◽  
Almagul Kushugulova ◽  
Samat Kozhakhmetov ◽  
Gulnara Shakhabayeva ◽  
Indira Tynybayeva ◽  
...  

Introduction: Available evidence suggests that probiotics have different biological functions that depend on several mechanisms, such as antioxidant and DNA-protective activities. The probiotic consortium includes bacterial cultures such as Streptococcus thermophilus, Lactococcus lactis, Lactobacillus plantarum, and other bacterial cultures isolated from traditional Kazakh dairy products (ayran, kumys, shubat, and healthy clinical material). The aim of this study was to investigate the total antioxidant activity of the consortium of probiotic bacteria and to determine the activity of superoxide dismutase, glutathione reductase, and DNA-protective action.Material and methods: In vitro comet assay was used to determine the antigenotoxicity of the probiotic consortium. Total antioxidant activity was determined using a method of analysis with Trolox as the equivalent. The analysis method of superoxide dismutase activity assesses the inhibition rate of the nitroblue tetrazolium reduction to formazan by superoxide dismutase. Determination of glutathione reductase activity is based on the measurement of the NADPH oxidation speed.Results: A significantly high level of the total antioxidant activity of the probiotic consortium intact cells (15.3 mM/ml) was observed whereas the activity index of  lysate  was 11.1 mM/ml.The superoxide dismutase activity of probiotic consortium lysate was evaluated, with values that peaked at 0.24 U/mg protein. The superoxide dismutase activity of the consortium was lower in comparison to L.fernentum E-3 and L.fernentum E-18 cultures with values of 0.85 U/mg and 0.76 U/mg protein, respectively. SOD activity of probiotic consortium whole cells was not observed, which is typical for lactic acid bacteria.Glutathione reductase plays an important role in the optimal protection from oxidative stress. Glutathione reductase activity of the studied probiotic consortium was low; moreover, the activity of the lysate was two times higher than the activity of the cells reaching 0.01 units/ml. Investigations by Dr. Li have shown that the intracellular glutathione may give a significant protection of Lactococcus from the damaging action of H2O2, even at very low concentrations.The data from our study suggests that the co-incubation of the epithelial cells with probiotic bacteria reduces the percentage of damaged cells (damage index–0.60).Conclusion: The studied probiotic consortium has antigenotoxic and antioxidant activities. Preparations and products of this probiotic consortium may serve as a protective component in the intestinal microbial ecosystem. 


1990 ◽  
Vol 184 (2) ◽  
pp. 193-199 ◽  
Author(s):  
Conrad R. Wheeler ◽  
Jhaine A. Salzman ◽  
Nabil M. Elsayed ◽  
Stanley T. Omaye ◽  
Don W. Korte

Catalysts ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 585 ◽  
Author(s):  
Ilona Sadauskiene ◽  
Arunas Liekis ◽  
Inga Staneviciene ◽  
Rima Naginiene ◽  
Leonid Ivanov

The aim of this study was to investigate the effects of aluminum (Al) or selenium (Se) on the “primary” antioxidant defense system enzymes (superoxide dismutase, catalase, and glutathione reductase) in cells of mouse brain and liver after long-term (8-week) exposure to drinking water supplemented with AlCl3 (50 mg or 100 mg Al/L in drinking water) or Na2SeO3 (0.2 mg or 0.4 mg Se/L in drinking water). Results have shown that a high dose of Se increased the activities of superoxide dismutase and catalase in mouse brain and liver. Exposure to a low dose of Se resulted in an increase in catalase activity in mouse brain, but did not show any statistically significant changes in superoxide dismutase activity in both organs. Meanwhile, the administration of both doses of Al caused no changes in activities of these enzymes in mouse brain and liver. The greatest sensitivity to the effect of Al or Se was exhibited by glutathione reductase. Exposure to both doses of Al or Se resulted in statistically significant increase in glutathione reductase activity in both brain and liver. It was concluded that 8-week exposure to Se caused a statistically significant increase in superoxide dismutase, catalase and glutathione reductase activities in mouse brain and/or liver, however, these changes were dependent on the used dose. The exposure to both Al doses caused a statistically significant increase only in glutathione reductase activity of both organs.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Israel Pérez-Torres ◽  
Verónica Guarner-Lans ◽  
Alejandra Zúñiga-Muñoz ◽  
Rodrigo Velázquez Espejel ◽  
Alfredo Cabrera-Orefice ◽  
...  

We report the effect of cross-sex hormonal replacement on antioxidant enzymes from rat retroperitoneal fat adipocytes. Eight rats of each gender were assigned to each of the following groups: control groups were intact female or male (F and M, resp.). Experimental groups were ovariectomized F (OvxF), castrated M (CasM), OvxF plus testosterone (OvxF + T), and CasM plus estradiol (CasM + E2) groups. After sacrifice, retroperitoneal fat was dissected and processed for histology. Adipocytes were isolated and the following enzymatic activities were determined: Cu-Zn superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST), and glutathione reductase (GR). Also, glutathione (GSH) and lipid peroxidation (LPO) were measured. In OvxF, retroperitoneal fat increased and adipocytes were enlarged, while in CasM rats a decrease in retroperitoneal fat and small adipocytes are observed. The cross-sex hormonal replacement in F rats was associated with larger adipocytes and a further decreased activity of Cu-Zn SOD, CAT, GPx, GST, GR, and GSH, in addition to an increase in LPO. CasM + E2exhibited the opposite effects showing further activation antioxidant enzymes and decreases in LPO. In conclusion, E2deficiency favors an increase in retroperitoneal fat and large adipocytes. Cross-sex hormonal replacement in F rats aggravates the condition by inhibiting antioxidant enzymes.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 463
Author(s):  
Gabriela Krausova ◽  
Antonin Kana ◽  
Marek Vecka ◽  
Ivana Hyrslova ◽  
Barbora Stankova ◽  
...  

The selenium (Se) enrichment of yeasts and lactic acid bacteria (LAB) has recently emerged as a novel concept; the individual health effects of these beneficial microorganisms are combined by supplying the essential micronutrient Se in a more bioavailable and less toxic form. This study investigated the bioavailability of Se in the strains Enterococcus faecium CCDM 922A (EF) and Streptococcus thermophilus CCDM 144 (ST) and their respective Se-enriched forms, SeEF and SeST, in a CD (SD-Sprague Dawley) IGS rat model. Se-enriched LAB administration resulted in higher Se concentrations in the liver and kidneys of rats, where selenocystine was the prevalent Se species. The administration of both Se-enriched strains improved the antioxidant status of the animals. The effect of the diet was more pronounced in the heart tissue, where a lower glutathione reductase content was observed, irrespective of the Se fortification in LAB. Interestingly, rats fed diets with EF and SeEF had higher glutathione reductase activity. Reduced concentrations of serum malondialdehyde were noted following Se supplementation. Diets containing Se-enriched strains showed no macroscopic effects on the liver, kidneys, heart, and brain and had no apparent influence on the basic parameters of the lipid metabolism. Both the strains tested herein showed potential for further applications as promising sources of organically bound Se and Se nanoparticles.


1991 ◽  
Vol 24 (2) ◽  
pp. 111-114 ◽  
Author(s):  
Benedito Barraviera ◽  
Paulo Câmara Marques Pereira ◽  
Jussara Marcondes Machado ◽  
Maria Julia de Souza ◽  
Carlos Roberto G. Lima ◽  
...  

The authors evaluated the isoniazid acetylating phenotype and measured hematocrit, hemoglobin, glucose-6-phosphate dehydrogenase and glutathione reductase activities plus serum sulfadoxin levels in 39 patients with paracoccidioidomycosis (33 males and 6 females) aged 17 to 58 years. Twenty one (53.84%) of the patients presented a slow acetylatingphenotype and 18(46.16%) a fast acetylating phenotype. Glucose-6-phosphate- dehydrogenase (G6PD) acti vity was decreased in 5(23.80%) slow acetylators and in 4(22.22%) fast acetylators. Glutathione reductase activity was decreased in 14 (66.66%) slow acetylators and in 12 (66.66%) fast acetylators. Serum levels of free and total sulfadoxin Were higher in slow acetylator (p < 0.02). Analysis of the resultspermitted us to conclude that serum sulfadoxin levels are related to the acetylatorphenotype. Furthermore, sulfadoxin levels were always above 50 µg/ml, a value considered therapeutic. Glutathione reductase deficiency observed in 66% of patients may be related to the intestinal malabsorption of nutrients, among them riboflavin, a FAD precursor vitamin, inpatients with paracoceidioidomycosis.


2014 ◽  
Vol 2 ◽  
Author(s):  
Saule Saduakhasova ◽  
Almagul Kushugulova ◽  
Samat Kozhakhmetov ◽  
Gulnara Shakhabayeva ◽  
Adil Supiyev ◽  
...  

Introduction: The immune-modulatory effects of synbiotics and their ability to reduce free radical levels may be useful for functional food that is able to be active throughout whole period of colonization of the gastrointestinal tract.The aim of the present study was to investigate the immune-modulatory and antioxidant effects of the synbiotic product "NАR," a probiotic beverage.Methods: The presence of IL-2, IL-4, IL-6, IL-8, IL-10, αTNF, γIFN, Ig A, Ig M, and Ig E was studied in vitro using a solid immunosorbent analysis. The total antioxidant activities of superoxide dismutase and glutathione reductase were determined by a spectrophotometry using the Sigma-Aldrich sets.Results: Studies of the immune-modulatory properties of the synbiotic product NAR showed 1.7 fold increase of γINF levels (p<0.01) in blood after consumption of the synbiotic product “NAR” in comparison to control values, whereas the concentrations of IL-4 and Ig E decreased 2.0 times (treatment: 9.3; control: 18.7; p<0.01) and 1.3 times (p<0.1), respectively. The consumption of the synbiotic product “NAR” caused an increase in the proportion of γINF/IL 4 (treatment: 15.4; control: 4.4; p<0.01), which indicates a reduction in functional activity of Th2-type lymphocytes in comparison with the function of Th1 cells.Our study showed a high level of the total antioxidant activity of the synbiotic product (67.4 mmol/ml). The antioxidant activity of the intact cells of consortium (15.3 mM/ml), which was the basis for the preparation of the symbiotic product, is several times lower than the activity observed in the symbiotic samples.Expression of SOD is one of the mechanisms of antioxidant stress radicals inactivation by bacteria. The analysis identified a superoxide dismutase activity of synbiotic product (1.42 U/mg protein). A glutathione reductase activity of the synbiotic product was elevated (0.06 U/ml). Conclusion: The majority of the inflammatory mediators found in the blood after the consumption of symbiotic product NAR were inflammatory mediators that activate a cellular component of the resistance. Moreover, the symbiotic product has a high antioxidant activity. 


2014 ◽  
Vol 22 (2) ◽  
pp. 167-174 ◽  
Author(s):  
Omid Younesi ◽  
Ali Moradi

AbstractThe experiment was conducted in order to study effects of seeds priming with gibberellic acid (GA3) at 0, 3, 5 and 8 mM on germination, growth and antioxidant enzymes activity in alfalfa seedlings under salinity stress (200 mM NaCl). All control seeds germinated. The rate of germinated seeds was reduced to 48% in the presence of NaCl, and increased to 76% after seeds priming with 5 mM GA3. Priming with 5 mM GA3 was also correlated with an increase of dry weight of seedlings derived from both stressed and non-stressed seeds as well as with the reduction of electrolyte leakage (EL) and malondialdehyde (MDA) level in salt stressed seedlings. The activity of superoxide dismutase, catalase, guaiacol peroxidase and ascorbate peroxidase in primed and non-primed seeds increased in the presence of NaCl and after priming of seeds with 5 mM GA3, whereas only small effect on glutathione reductase activity in both primed and non-primed seeds was observed. The total ascorbate level was higher in both stressed and non-stressed seedlings from primed seeds. These results suggest that GA3 priming might increase the salt tolerance of alfalfa seedlings through enhancing the activities of antioxidant enzymes and reducing the membrane damage as estimated using biomarkers, EL index and MDA content.


Sign in / Sign up

Export Citation Format

Share Document