scholarly journals Prediction of molybdenum availability to plants in differentiated soil conditions

2017 ◽  
Vol 63 (No. 11) ◽  
pp. 491-497 ◽  
Author(s):  
Rutkowska Beata ◽  
Szulc Wiesław ◽  
Spychaj-Fabisiak Ewa ◽  
Pior Natalia

The aim of the study was to assess of plant available molybdenum (Mo) resources in the solutions of soils as well as to evaluate the effects of selected soil properties on changes of the Mo concentration in the soil solution. Sixty-two soil samples were investigated. The soil solutions were obtained by modified vacuum displacement method. The results showed that Mo concentrations in the soil solutions were much differentiated, ranging from 0.002 to approximately 0.100 µmol/L. Positive correlations were found between soil solution Mo concentration and soil pH as well as the contents of available phosphorous and organic carbon in soil. At the same time, Mo concentration was higher in the soil solutions obtained from soils with larger amounts of soil particles with diameter lesser than<br /> 0.02 mm. Among the analysed soil parameters in this study, soil pH is the most important factor that influences the Mo concentration in soil solution. Studies have shown that in acid sandy soils the amount of molybdenum found in the soil solution is too small to cover the nutritional requirements of the plants. This indicates the need of fertilization with this element. Regular liming of soils and fertilization with phosphorus can improve the availability of molybdenum to plants.

Soil Research ◽  
1997 ◽  
Vol 35 (1) ◽  
pp. 183 ◽  
Author(s):  
M. J. McLaughlin ◽  
K. G. Tiller ◽  
M. K. Smart

Fifty commercial potato crops and associated soils were sampled. Soil solutions were extracted from rewetted soils by centrifugation, and solution composition was related to Cd concentrations in tubers. Soils were also extracted with 0·01 M Ca(NO3)2 and 0·01 M CaCl2 solutions, and Cd2+ activities in the extracts were calculated by difference using the stability constants for formation of CdCl2-nn species. The soils had saline solutions (>4 dS/m), and Cl- and SO2-4 in solution markedly affected the speciation of Cd in soil solution, with chloro-complexes, in particular, dominating. While low soil pH was associated with high (>25 nM) concentrations of Cd in soil solution, chloro-complexation also led to high concentrations of Cd in solution, even at neutral to alkaline soil pH values. Tuber Cd concentrations were not related to activities of Cd2+ in soil solution or to activities in dilute salt extracts of soil. Tuber Cd concentrations were related to the degree of chloro-complexation of Cd in solution. The relationship of tuber Cd concentrations to chloro-complexation in soil solution suggests that Cd species other than the free Cd2+ ion are involved in the transport through soil and uptake of Cd by plants.


Soil Research ◽  
1988 ◽  
Vol 26 (1) ◽  
pp. 177 ◽  
Author(s):  
DM Weaver ◽  
GSP Ritchie ◽  
GC Anderson ◽  
DM Deeley

The consequences of previous as well as current environmental conditions and management practices on the potential for phosphorus (P) to be lost by drainage from sandy soils in the short term (< 1 year) were studied in the laboratory and the field. The potential for P losses by drainage was estimated by measuring soil solution P levels and rapidly released P. Rapidly released P was measured by determining the concentration of dissolved inorganic P contained in filtered (<0.45 pm) soil solutions after incubating soil at saturation for 15 min at ambient temperature. In the laboratory, sandy soils were incubated with ordinary superphosphate, coastal superphosphate (a granulated mixture of equal parts of superphospate, rock phosphate and elemental sulfur) or lime-superphosphate (a lime-reverted superphosphate with 18% kiln dust) and sequentially desorbed with deionized water. The effects of the extent of leaching, fertilizer type, application rate and the time of contact with the soil on soil solution P levels were investigated. The influence of annual pasture death and summer rainfall on rapidly released P in soils that had been pre-treated by leaching were also investigated. Phosphorus concentrations decreased logarithmically in the successive supernatants of the sequentially desorbed soils. More P was desorbed from soils incubated with superphosphate and lime-superphosphate than soil incubated with coastal superphosphate. At each level of pre-leaching, the P concentrations in the soil solution increased with increasing time. The level, to which the P concentration in the soil solution increased at each time, decreased with increased extent of pre-leaching. The addition of P fertilizers increased the concentration of P in the soil solution. The concentrations increased with increasing application rate and were much higher for superphosphate than for coastal superphosphate; however, there was little effect of contact time on soil solution P levels. Rapidly released P levels after leaching increased during a period of no further leaching. Additional moisture or plant material during this period of no further leaching increased the rate and extent to which rapidly released P increased. Monitoring of rapidly released P in the 0-2, 2-5, 5-10 and 10-20 cm layers of field plots, with and without applications of superphosphate, showed that sampling depth, water flow path, fertilizer management, rainfall pattern and background P levels would affect the estimate of short-term P losses. Rapidly released P in the 0-2 cm layer varied markedly with time and was higher (P < 0.05) than that in lower soil layers. Rapidly released P increased after the winter and spring rains diminished and then decreased after the rains commenced again at the end of the summer. A possible annual cycle of P in sandy soils in a mediterranean climate is postulated by considering the laboratory and field data in combination.


Soil Research ◽  
1985 ◽  
Vol 23 (2) ◽  
pp. 151 ◽  
Author(s):  
DC Edmeades ◽  
DM Wheeler ◽  
OE Clinton

In preliminary experiments a centrifuge method for extracting soil solutions was examined. Neither the time nor speed of centrifuging had any effect on the concentrations of cations in soil solution. The concentration of cations increased with decreasing soil moisture content, and NO3, Ca, Mg, and Na concentrations increased with increasing time of storage of freshly collected moist soils. It was concluded that to obtain soil solutions, which accurately reflect the soil solution composition and ionic strength (I) in situ, requires that soil samples are extracted immediately (<24 h) following sampling from the field. Prior equilibration of soil samples, to adjust soil moisture contents, is therefore not valid. The effect of time of sampling and soil type, and the effects of fertilizer and lime applications, on soil solution composition and ionic strength, were measured on freshly collected field moist topsoils. Concentrations of Ca, Mg, K, Na, NH, and NO, were lowest in the winter and highest in the summer. Consequently, there was a marked seasonal variation in ionic strength which ranged from 0.003 to 0.016 mol L-1 (mean, 0.005 s.d. 0.003) over time and soil type. Withholding fertilizer (P, K, S, Ca) for two years had only a minor effect on ionic composition and strength, and liming increased solution Ca, Mg and HCO3, but decreased Al, resulting in a twofold increase in ionic strength. These results suggest that the ionic strength of temperate grassland topsoils in New Zealand lie within the range 0.003-0.016 and are typically 0.005.


Author(s):  
Dalai Banzragch ◽  
Hiroaki Ishiga ◽  
Damdinpurev Nasandulam

A large-scale Medieval harbor site has been recently discovered at Nakazu-Higashihara in Masuda City, Chugoku region, Japan. The Medieval harbor site is divided into north and south areas. The concentration of 22 elements in soil samples from the north of the harbor site was determined in order to identify the geochemical signatures of the Medieval harbor site. The evidence described in the north area is an example of identification of both natural and anthropogenic processes that lead to geochemical variations within the archaeological soils. The north area of the site contains silt and sandy soils characterized by highest concentration of Zr and relatively low levels of most other elements (except for Sr and TS). Negative or weak positive correlations between TiO2 and MnO, and CaO and P2O5 in the north area indicate that this association of elements represents an ancient anthropogenic signature, especially related to residential sites in all soil types. Correlation between TiO2 and Ni, Y, Nb, Zr, Th, and Fe2O3 did not reflect the anthropogenic history. However, these elements and their ratios can be used to identify sources, as well as to establish baseline concentration of other elements which are influenced by anthropogenic and detrital inputs.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258166
Author(s):  
A. K. Shukla ◽  
S. K. Behera ◽  
R. Tripathi ◽  
C. Prakash ◽  
A. K. Nayak ◽  
...  

Understanding the spatial spreading patterns of plant-available sulphur (S) (AS) and plant-available micronutrients (available zinc (AZn), available iron (AFe), available copper (ACu), available manganese (AMn) and available boron (AB)) in soils, especially in coastal agricultural soils subjected to various natural and anthropogenic activities, is vital for sustainable crop production by adopting site-specific nutrient management (SSNM) strategies. We studied the spatial distribution patterns of AS, AZn, AFe, ACu, AMn, and AB in cultivated soils of coastal districts of India using geostatistical approaches. Altogether 39,097 soil samples from surface (0 to 15 cm depth) layers were gathered from farm lands of 68 coastal districts. The analysis of soil samples was carried out for soil pH, electrical conductivity (EC), soil organic carbon (SOC) and AS, AZn, AFe, ACu, AMn, and AB. Soil pH, EC and SOC varied from 3.70 to 9.90, 0.01 to 7.45 dS m-1 and 0.02 to 3.74%, respectively. The concentrations of AS, AZn, AFe, ACu, AMn, and AB varied widely in the study area with their corresponding mean values were 37.4±29.4, 1.50±1.53, 27.9±35.1, 2.14±1.74, 16.9±18.4 and 1.34±1.52 mg kg-1, respectively. The coefficient of variation values of analyzed soil parameters varied from 14.6 to 126%. The concentrations of AS, AZn, AFe, ACu, AMn, and AB were negatively and significantly correlated with soil pH and positively and significantly correlated with SOC. The geostatistical analysis indicated stable, Gaussian and exponential best-fit semivariogram models with moderate to strong spatial dependence for available nutrients. The generated spatial spreading maps revealed different distribution patterns for AS, AZn, AFe, ACu, AMn, and AB. There were variations in spatial spreading patterns of AS, AZn, AFe, ACu, AMn, and AB in east- and west-coastal area. About 62, 35, 12, 0.4, 23 and 45% of the study area had deficiency of AS, AZn, AFe, ACu, AMn, and AB, respectively. The spatial spreading maps will be highly useful for SSNM in the cultivated coastal soils of the country. This study could also be used as a base for assessing spatial spreading patterns of soil parameters in cultivated coastal areas of other parts of the world.


Soil Research ◽  
2009 ◽  
Vol 47 (3) ◽  
pp. 305 ◽  
Author(s):  
Guodong Yuan

Soil plots on a pasture were amended with biosolids spiked with copper (Cu), nickel (Ni), or zinc (Zn), resulting in maximum concentrations of 181 mg Cu, 58 mg Ni, and 296 mg Zn/kg in soil. Soil solutions from the plots were obtained by centrifugation for chemical analyses, and free metal ion activities (Cu2+, Ni2+, Zn2+) were computed from the Windermere Humic Aqueous Model (WHAM). In the 3 years after biosolids amendment, the concentrations and activities of Cu, Ni, and Zn in soil solution increased with their amounts in biosolids. Copper and Ni concentrations in soil solution were higher than their critical concentrations recently reported in the literature. While Cu in soil solution was dominated by Cu-humic complexes, Ni2+ and Zn2+ were the majority species of the metals. Liming the soil plots to increase pH from 5.5 to ~7 greatly reduced the concentrations of the trace metals, particularly Zn; Cu2+, Zn2+, and Ni2+ were decreased by orders of magnitude 2–3, 2, and 1, respectively. Metal concentrations and activities fluctuated in the next 2 years as soil pH changed slightly and then after the use of elemental sulfur to acidify soil to pH ~6.5. Eight years after application of biosolids and through soil pH adjustment by lime and sulfur, Cu2+ and Zn2+ were very close to, and Ni2+ was a few times higher than, their corresponding baseline values. Maintaining a near neutral pH thus would be the key to keeping bioavailable metal concentrations low in a soil with an organic carbon content of 23.8 g/kg.


Author(s):  
Sebastian Vogel ◽  
Eric Bönecke ◽  
Charlotte Kling ◽  
Eckart Kramer ◽  
Katrin Lück ◽  
...  

AbstractLiming agricultural fields is necessary for counteracting soil acidity and is one of the oldest operations in soil fertility management. However, the best management practice for liming in Germany only insufficiently considers within-field soil variability. Thus, a site-specific variable rate liming strategy was developed and tested on nine agricultural fields in a quaternary landscape of north-east Germany. It is based on the use of a proximal soil sensing module using potentiometric, geoelectric and optical sensors that have been found to be proxies for soil pH, texture and soil organic matter (SOM), which are the most relevant lime requirement (LR) affecting soil parameters. These were compared to laboratory LR analysis of reference soil samples using the soil’s base neutralizing capacity (BNC). Sensor data fusion utilizing stepwise multi-variate linear regression (MLR) analysis was used to predict BNC-based LR (LRBNC) for each field. The MLR models achieved high adjusted R2 values between 0.70 and 0.91 and low RMSE values from 65 to 204 kg CaCO3 ha−1. In comparison to univariate modeling, MLR models improved prediction by 3 to 27% with 9% improvement on average. The relative importance of covariates in the field-specific prediction models were quantified by computing standardized regression coefficients (SRC). The importance of covariates varied between fields, which emphasizes the necessity of a field-specific calibration of proximal sensor data. However, soil pH was the most important parameter for LR determination of the soils studied. Geostatistical semivariance analysis revealed differences between fields in the spatial variability of LRBNC. The sill-to-range ratio (SRR) was used to quantify and compare spatial LRBNC variability of the nine test fields. Finally, high resolution LR maps were generated. The BNC-based LR method also produces negative LR values for soil samples with pH values above which lime is required. Hence, the LR maps additionally provide an estimate on the quantity of chemically acidifying fertilizers that can be applied to obtain an optimal soil pH value.


1971 ◽  
Vol 43 (1) ◽  
pp. 11-19
Author(s):  
Armi Kaila

In the present study an attempt was made to study by statistical methods the proportion of Al of the exchange acidity of 298 soil samples of various kind, and to what extent the titratable nonexchangeable acidity in these soils is connected with Al, when Al soluble in Tamm’s acid oxalate was used as its indicator. Unbuffered N KCI replaced Al only from soil samples with a pH less than 5.3 in 0.01 M CaCl2 . In this part of the material, Al corresponded, on the average, to one third of the exchange acidity of mineral soil samples, and to 16 per cent of that of organic soils. The amount of Al was usually the higher the lower the soil pH, but the correlation was close only in the group of clay soils. Titratable nonexchangeable acidity was estimated as the difference of the amount of acidity neutralized at pH 8.2 and the corresponding amount of exchange acidity replaced by unbuffered KCI. In 100 clay soil samples it was, on the average, 12.0 ± 1.3 me/100 g, in 42 samples of silt and loam soils 8.8 ± 1.8 me/100 g, in 99 sandy soils 8.9 ± 1.1 me/100 g and in 57 organic soils 49.1 ± 6.8 me/100 g. There was no correlation between titratable nonexchangeable acidity and the clay content within various soil groups. In the clay soils exalate soluble Al alone explained 78.3 %, in the silt and loam soils 59.8 %, in the sandy soils 6.5 %, and in the organic soils 0.6 % of the variation in titratable nonexchangeable acidity. Taking into account the content of organic C increased the rate of explanation only to 82.1 % in clay soils, to 84.1 % in silt and loam soils, to 83,1 % in sandy soils, and to 63.7 % in the organic soils. Further, adding the soil pH increased the rate of explanation 5.8 to 9.6 per cent units in various soil groups, but considering of oxalate soluble Fe did no more distinctly increase the part of variation explained, except in the organic soils. Regression equations were calculated for the relationship of these variables. According to the partial correlation coefficients and to the β-coefficients, the relative importance of oxalate soluble Al in explaining the variation in titratable nonexchangeable acidity was in the clay soils higher than even that of organic C content, but in the other mineral soil groups it was less important than both C content and pH; in the organic soils even oxalate soluble Fe appeared to be slightly more important.


Soil Research ◽  
1978 ◽  
Vol 16 (1) ◽  
pp. 67 ◽  
Author(s):  
GP Gillman ◽  
LC Bell

Solutions obtained from six soils in tropical North Queensland after incubation at a moisture tension of 0.1 bar were analysed to obtain data on their ionic strengths. Soil extracts, at soil: solution ratios of 1:1, 1:2.5, 1:5, and 1:10 were also examined. Determinations on the aqueous phase included electrical conductivity, pH, ammonium, calcium, magnesium, potassium, sodium, bicarbonate, chloride, sulphate, and nitrate. Ionic concentrations of the soil solutions were found to be low when compared with many of the values reported in the literature. The upper limit for the ionic strength was about 0.005. Ionic strength was well correlated with the electrolytic conductivity of the soil solution itself, and also of the soil extracts. Relationships found between the soil solution and soil extracts in respect of total cation (and anion) content and also cation ratios, allow predictions about the soil solution to be made from soil extract data. Consideration of the ionic ratio of calcium to total cations in these soils suggests that the soils may have suboptimal levels of calcium for the growth of many plant species.


Author(s):  
H. A. D. D. T. Gunasekera ◽  
R. C. L. De Silva

Aluminium is the most abundant metal in the earth’s crust. In soil, aluminum is mainly found in the mineral form as aluminosilicates and aluminum oxides and this aluminium is in stable inactive form. In addition, Al can be found as precipitates or in very minute quantities appear in soluble forms such as conjugated organic and inorganic, and molecular ions. Aluminium mobility and as a consequence aluminium toxicity, is mainly restricted to acid environments. Depending on the soil pH these mobile forms are capable of influencing biological systems. Aluminium has low mobility under most environmental conditions. However, below a pH of 4.0 its solubility increases and aluminium is released from silicate rocks under such acidic conditions. The levels of dissolved aluminium in natural groundwater samples are generally low, probably due to its low solubility at neutral pH values. Release of acids by anthropogenic activities influence the soil acidity levels. Therefore, elevated levels of aluminium have been found in acidified soil solutions and surface waters causing harmful effects to living organisms. The present study was aimed at proving the above theoretical hypothesis and existence of a possible relationship between soil salinity and soil acidity on the concentration of mobile aluminium ions in samples obtained during the location surveys. Samples were collected from selected locations in Ratnapura, Rathupaswala, Marawila, Mabima and Muthurajawela to get different soil types and the survey results were used to test the hypothetical relationship between the presence of the stated factors, and the existence of a high concentration of mobile aluminium in the soil water samples. The analysis covered basic parameters such as soil pH, soil cation exchange capacity (CEC), soil organic matter, soil electrical conductivity and the influence of the concentration of mobile aluminium at different pH and Na+ concentration levels. The total aluminium concentration in the soil was assayed by digesting samples with strong acid. Concentration of mobile aluminium in soil samples were analyzed using the flame atomic absorption spectrophotometry. The results indicated that there is no clear relationship between mobile aluminium and total aluminium in the soil. It was also found that the concentration of mobile aluminium released increased with decrease in soil pH and that the increase was marked when the pH of soil water was less than 4.0. Highest mobile aluminium release to the soil solution was found from Mabima sites [at pH 5.00 was 0.54 (±0.06) mg kg-1 of dry soil, at pH 0.00 was 90.12 (±7.01) mg kg-1] and least in samples from Marawila sites [at pH 5.00 was 0.48 (±0.03) mg kg-1, at pH 0.00 was 4.52 (±0.36) mg kg-1]. This result confirmed that there is an effect of soil acidity on the concentration of mobile aluminium in the soil but with no direct correlation. Results also showed that the concentration of mobile aluminium released increased with increasing soil salinity and that the increase was rapid when the Na+ ion concentration was higher than 2.0 %. Highest mobile aluminium release to the soil solution was found from Muthurajawela sites [Na+ 1.0% = lower than detection limit, Na+ 5.0% = 9.87 (±0.67) mg kg-1] and least found from Marawila sites [Na+1.0% = lower than detection limit, Na+ 5.0% = 2.24 (±0.23) mg kg-1] confirming the effect of soil salinity on the concentration of mobile aluminium in the soil. The study also points towards the future opportunities for research to confirm these findings using wider samples and employing more vigorous research methodologies.


Sign in / Sign up

Export Citation Format

Share Document