scholarly journals Deposition of Gold (III) from Hydrochloric Acid Solutions on Carbon Nanotubes under Hydrothermal Conditions

Author(s):  
Roman V. Borisov ◽  
Oleg V. Belousov ◽  
Anatoliy M. Zhizhaev

The paper deals with the recovery of gold (III) from hydrochloric acid solutions on carbon based nanotube material at elevated temperatures under autoclave conditions. It is established that the quantitative recovery of gold (III) from hydrochloric acid solution upon its contact with carbon material occurs at a temperature of 170 °C for 240 minutes. The morphological features of metallic gold particles are studies by scanning electron microscopy

2013 ◽  
Vol 690-693 ◽  
pp. 1029-1032
Author(s):  
Xiao Qiang Li ◽  
Li Juan Lan

Active carbon modified by hydrochloric acid was prepared with impregnation method. The synthesized material was characterized by scanning electron microscopy. It was proved that plenty of pores with diameter of about 5-10μm were exist on the surface of active carbon. The adsorption process with toluene was performed over the modified active carbon to investigate the adsorptive efficiency. For comparison, other porous materials were also performed the adsorption experiment. The results showed that active carbon modified by hydrochloric acid has high adsorptive efficiency for toluene. The results proved that adsorptive performance of active carbon increased with the hydrochloric acid concentration.


2017 ◽  
Vol 54 (1) ◽  
pp. 41-44 ◽  
Author(s):  
Maria Adina Vulcan ◽  
Celina Damian ◽  
Paul Octavian Stanescu ◽  
Eugeniu Vasile ◽  
Razvan Petre ◽  
...  

This paper deals with the synthesis of polyurea and its use as polymer matrix for nanocomposites reinforced with multi-walled carbon nanotubes (MWCNT). Two types of materials were obtained during this research, the first cathegory uses the polyurea as matrix and the second one uses a mixture between epoxy resin and polyurea. The nanocomposites were characterized by Thermogravimetric Analysis (TGA), Dynamic Mechanical Analysis (DMA), Scanning Electron Microscopy (SEM) and Tensile Tests .The elastomeric features of nanocomposites were highlighted by the results which showed low value of Tg. Also higher thermal stability with ~40oC compared with commercial products (M20) were observed, but lower mechanical properties compared to neat polyurea.


2021 ◽  
Vol 11 (19) ◽  
pp. 9256
Author(s):  
Michał Chodkowski ◽  
Iryna Ya. Sulym ◽  
Konrad Terpiłowski ◽  
Dariusz Sternik

In this paper, we focus on fabrication and physicochemical properties investigations of silica–multiwalled carbon nanotubes/poly(dimethylsiloxane) composite coatings deposited on the glass supports activated by cold plasma. Air or argon was used as the carrier gas in the plasma process. Multiwalled carbon nanotubes were modified with poly(dimethylsiloxane) in order to impart their hydrophobicity. The silica–multiwalled carbon nanotubes/poly(dimethylsiloxane) nanocomposite was synthesized using the sol–gel technique with acid-assisted tetraethyl orthosilicate hydrolysis. The stability and the zeta potential of the obtained suspension were evaluated. Then, the product was dried and used as a filler in another sol–gel process, which led to the coating application via the dip-coating method. The substrates were exposed to the hexamethyldisilazane vapors in order to improve their hydrophobicity. The obtained surfaces were characterized by the wettability measurements and surface free energy determination as well as optical profilometry, scanning electron microscopy, and transmittance measurements. In addition, the thermal analyses of the carbon nanotubes as well as coatings were made. It was found that rough and hydrophobic coatings were obtained with a high transmittance in the visible range. They are characterized by the water contact angle larger than 90 degrees and the transmission at the level of 95%. The X-ray diffraction studies as well as scanning electron microscopy images confirmed the chemical and structural compositions of the coatings. They are thermally stable at the temperature up to 250 °C. Moreover, the thermal analysis showed that the obtained composite material has greater thermal resistance than the pure nanotubes.


Fibers ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 31 ◽  
Author(s):  
Renata Fortini ◽  
Asmus Meyer-Plath ◽  
Dominic Kehren ◽  
Ulrich Gernert ◽  
Leonardo Agudo Jácome ◽  
...  

In this work the flexural rigidity of individual large diameter multi-walled carbon nanotubes (MWCNTs) was investigated. The bending modulus were obtained by detecting the resonance frequencies of mechanically excited cantilevered carbon nanotubes using the so-called dynamic scanning electron microscopy technique, and applying the Euler–Bernoulli beam theory. For the nanotubes studied, we determined a modulus of up to 160 GPa. This agrees with values reported by other authors for MWCNTs produced by catalytic chemical vapor deposition, however, it is 6-8 times smaller than values reported for single and multi-walled carbon nanotubes produced by arc-discharge synthesis. Toxicological studies with carbon nanotubes have been showing that inhaled airborne nanofibers that reach the deep airways of the respiratory system may lead to serious, asbestos-like lung diseases. These studies suggested that their toxicity critically depends on the fiber flexural rigidity, with high rigidity causing cell lesions. To complement the correlation between observed toxicological effects and fiber rigidities, reliable and routinely applicable measurement techniques for the flexural rigidity of nanofibers are required.


2004 ◽  
Vol 85 (1) ◽  
pp. 112-114 ◽  
Author(s):  
Alireza Nojeh ◽  
Wai-Kin Wong ◽  
Aaron W. Baum ◽  
R. Fabian Pease ◽  
Hongjie Dai

Author(s):  
Kei Ishikawa ◽  
Hai Duong ◽  
Junichiro Shiomi ◽  
Shigeo Maruyama

Evaporation of different metals (Au, Ti, Al and Pd) onto Vertically-Aligned Single-Walled Carbon Nanotubes (VASWNT) has been studied. Observations through Scanning Electron Microscopy (SEM) showed a clear metal-dependence of the deposition layer structure on top of the VASWNT, reflecting the variation of wettability and cohesive energy of each metal. These characteristics also influence the structures of the metal penetrated through the top surface into VASWNT film, where metal forms particles inside VASWNT film except for Ti. A simple annealing technique to remove metals penetrated in the SWNT films is demonstrated. Some peculiar morphologies found during the processes are also presented.


2009 ◽  
Vol 79-82 ◽  
pp. 1503-1506 ◽  
Author(s):  
Qing Bo Tian ◽  
Li Na Xu ◽  
Li Yang ◽  
Yan Sheng Yin

The influences of Fe2O3 doping on crystallization characteristics and microstructural morphology in the SiO2-Al2O3-MgO-K2O-ZrO2-F glass were investigated by using differential scanning calorimeter, X-ray diffraction and scanning electron microscopy techniques. The results indicate that the addtions of Fe2O3 shift the crystallization peaks to higher temperatures and the crystallization peaks increases in magnitude and the gap values between two crystallization peak temperatures boarden with the increment of Fe2O3 contents.The star-shaped crystals of cordietite by dendritic-manner growths are homogeneously precipitated in the rusidual glass. The mica phases, which are precipitated at interdendritic cordietite phases and formed the plate shapes at the elevated temperatures. The mica crystals grow at the expense of cordietite phases and finally form the composites of mica/cordietite uniformly distributed.


2012 ◽  
Vol 602-604 ◽  
pp. 183-186 ◽  
Author(s):  
Jing Liu ◽  
Rong Wu ◽  
Jin Li ◽  
Yan Fei Sun ◽  
Ji Kang Jian

In this paper, we report the synthesis of cubic silicon carbide (3C-SiC) nanoparticles by direction reaction of silicon powders and carbon nanotubes. The as-prepared SiC nanoparticles were characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy and Raman scattering at room temperature. The possible growth mechanism is proposed.


2012 ◽  
Vol 454 ◽  
pp. 63-66
Author(s):  
Xia Yuan ◽  
Yu Liang An ◽  
Chen Zhang ◽  
Hong Chao Sui

Single-walled carbon nanotubes (SWNTs) have been successfully prepared from starch by arc discharge technique. The SWNTs products were characterized by scanning electron microscopy, transmission electron microscopy and Raman spectroscopy. The growth mechanism of the SWNTs was discussed in terms of the starch. The results demonstrate that starch is one of the suitable precursor for making SWNTs by arc discharge method.


Sign in / Sign up

Export Citation Format

Share Document