scholarly journals Liposomes as target delivery of antitumor drugs

2016 ◽  
Vol 15 (2) ◽  
pp. 90-96 ◽  
Author(s):  
A. O. Raikov ◽  
A. . Hashem ◽  
M. A. Baryshnikova

Target delivery of antitumor drugs to cancer cells seems to be the very promising way of cancer therapy. The study on the application of immunoliposomes as nanocontainers for anticancer drugs started in the 90-ies. Immunoliposomal drug formulations of antitumor preparations have some advantages over traditional forms of drugs: lipid capsule reduces toxicity of drug due to the selective delivery to tumor and improves its bioavailability. However, despite these benefits, at present immunoliposomal drugs application is limited in the clinic. This review discusses current research status in field of development immunoliposomes and the possible targets for anticancer immuno-liposomes.

Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1201
Author(s):  
Garri Manasaryan ◽  
Dmitry Suplatov ◽  
Sergey Pushkarev ◽  
Viktor Drobot ◽  
Alexander Kuimov ◽  
...  

The PARP family consists of 17 members with diverse functions, including those related to cancer cells’ viability. Several PARP inhibitors are of great interest as innovative anticancer drugs, but they have low selectivity towards distinct PARP family members and exert serious adverse effects. We describe a family-wide study of the nicotinamide (NA) binding site, an important functional region in the PARP structure, using comparative bioinformatic analysis and molecular modeling. Mutations in the NA site and D-loop mobility around the NA site were identified as factors that can guide the design of selective PARP inhibitors. Our findings are of particular importance for the development of novel tankyrase (PARPs 5a and 5b) inhibitors for cancer therapy.


Biomedicines ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 110 ◽  
Author(s):  
Milad Ashrafizadeh ◽  
Ali Zarrabi ◽  
Sedigheh Saberifar ◽  
Farid Hashemi ◽  
Kiavash Hushmandi ◽  
...  

Cancer therapy is a growing field, and annually, a high number of research is performed to develop novel antitumor drugs. Attempts to find new antitumor drugs continue, since cancer cells are able to acquire resistance to conventional drugs. Natural chemicals can be considered as promising candidates in the field of cancer therapy due to their multiple-targeting capability. The nobiletin (NOB) is a ubiquitous flavone isolated from Citrus fruits. The NOB has a variety of pharmacological activities, such as antidiabetes, antioxidant, anti-inflammatory, hepatoprotective, and neuroprotective. Among them, the antitumor activity of NOB has been under attention over recent years. In this review, we comprehensively describe the efficacy of NOB in cancer therapy. NOB induces apoptosis and cell cycle arrest in cancer cells. It can suppress migration and invasion of cancer cells via the inhibition of epithelial-to-mesenchymal transition (EMT) and EMT-related factors such as TGF-β, ZEB, Slug, and Snail. Besides, NOB inhibits oncogene factors such as STAT3, NF-κB, Akt, PI3K, Wnt, and so on. Noteworthy, onco-suppressor factors such as microRNA-7 and -200b undergo upregulation by NOB in cancer therapy. These onco-suppressor and oncogene pathways and mechanisms are discussed in this review.


2021 ◽  
Author(s):  
Sankha Bhattacharya ◽  
Kapil Gore

Cancer is caused by an uncontrolled cell division, forming a tumor capable of metastasis. Cancer is the second leading cause of death worldwide. Conventional treatments kill healthy cells, causing side effects. Recently, nanomaterials are explored due to properties such as as- nano-size, high loading, and ligands’ attachment for a selective delivery. Apart from normal body cells, cancer cells express many receptors in excess, which serve as ‘targets’ for attacking the cells. Various ligands like proteins, peptides, polysaccharides can be attached to nanoparticles to allow proper and specific reach to the tumor. Such nanoparticles go to their desired site and stick onto the receptors, taken inside the cells by various methods. Antibodies are natural proteins that bind to foreign substances and remove them. IgG being the most explored antibody, suffers from many disadvantages such as non-specificity for required antigen, limited binding sites, low tumor penetration. Hence many researchers experimented by removing and adjusting the binding sites, using only the binding sites, enhancing the valency of naturally available IgG. It gave many benefits such as enhanced penetration, reduced immunogenicity, better delivery of drugs with fewer side effects. Continuing advancements in the field of protein engineering will help scientists to come up with better solutions. The properties allow easy surface interaction and entry, achieve better biodistribution, and reduce the amount of drug required. Targeting is based on Paul Ehrlich’s ‘magic bullet, ‘where the therapeutic moiety has two parts-one to identify the target and the second to eliminate it. This concept is revised to incorporate a third component, a carrier. Many nanocarriers can be used to target cancer cells containing ligands to identify malignant cells. Approaches to targeting are passive, active and physical targeting. Many such nanoparticles are in clinical trials and can be a better solution to cancer therapy.


2017 ◽  
Vol 4 (S) ◽  
pp. 2
Author(s):  
Fuyu Tamanoi

Advances in Nanotechnology have led to the development of a variety of nanomaterials that are changing the way cancer therapy is carried out. A particularly important example is nanoparticle that can carry cargo to tumor. We are using mesoporous silica nanoparticles (MSNs) for cancer therapy. MSNs contain thousands of pores that provide storage space for anticancer drugs. These materials are biocompatible and safe. In addition, we have recently introduced biodegradability into MSNs.  We have shown that MSNs exhibit excellent tumor targeting capability in two different animal model systems (chicken egg tumor model and mouse xenografts). This tumor targeting capability is partly due to its small size; these nano-sized particles can accumulate in tumor due to leaky tumor vasculature. In addition, we have carried out surface modifications to attach ligands that bind receptors present on the surface of cancer cells. For example, folate was attached to the surface that enables binding to folate receptors overexpressed on cancer cells.  We have also conferred controlled anticancer drug release capability to MSNs in collaboration with Fraser Stoddart and Jeff Zink. This was accomplished by attaching nanovalves at the opening of the pores. Rotaxanes and pseudorotaxanes are used to prepare nanovalves. These chemical compounds consist of a stalk and a moving part. When the moving part is close to the pore opening, the nanovalve is closed. On the other hand, when the moving part is located away from the pore opening, the nanovalve is closed. In this way, the nanovalve provides an open and close function so that controlled release of anticancer drugs can be carried out.  Light activated nanovalves were developed by incorporating azobenzene into nanovalves. Azobenzene changes conformation upon light exposure and this conformational change opens the nanovalve releasing anticancer drugs in a power and exposure time dependent manner. More recently, this system was modified by incorporating two-photon dyes that can capture energy from two-photon light and transfer to azobenzene to drive the release of anticancer drugs. This enables the system to work with tissue penetrating two-photon light.  We have also developed nanoparticles that respond to oscillating magnetic field. This system was developed using MSNs that contain iron oxide core. Because of superparamagnetic property of iron oxide, the internal temperature of such nanoparticles increases when exposed to oscillating magnetic field. This temperature increase drives opening of nanovalves that are particularly designed for this purpose.   Development of nanoparticles that respond to external cues such as light and magnetic field may change the way cancer therapy is carried out. Implications on the future of cancer therapy will be discussed.


2021 ◽  
Author(s):  
Vu Thanh Cong ◽  
Richard D. Tilley ◽  
George Sharbeen ◽  
Phoebe A. Phillips ◽  
Katharina Gaus ◽  
...  

It was recently shown that it is possible to exploit the nanoparticle shape to selectively target endocytosis pathways found in cancer and not healthy cells.


2017 ◽  
Vol 5 (43) ◽  
pp. 8514-8524 ◽  
Author(s):  
Tao Jia ◽  
Shuo Huang ◽  
Cangjie Yang ◽  
Mingfeng Wang

Robust unimolecular micelles of amphiphilic pH-responsive starlike copolymers that carry anticancer drugs and photothermal agents show enhanced therapeutic effect against cancer cells.


Author(s):  
Mayson H. Alkhatib ◽  
Dalal Al-Saedi ◽  
Wadiah S. Backer

The combination of anticancer drugs in nanoparticles has great potential as a promising strategy to maximize efficacies by eradicating resistant, reduce the dosage of the drug and minimize toxicities on the normal cells. Gemcitabine (GEM), a nucleoside analogue, and atorvastatin (ATV), a cholesterol lowering agent, have shown anticancer effect with some limitations. The objective of this in vitro study was to evaluate the antitumor activity of the combination therapy of GEM and ATVencapsulated in a microemulsion (ME) formulation in the HCT116 colon cancer cells. The cytotoxicity and efficacy of the formulation were assessed by the 3- (4,5dimethylthiazole-2-yl)-2,5-diphyneltetrazolium bromide (MTT) assay. The mechanism of cell death was examined by observing the morphological changes of treated cells under light microscope, identifying apoptosis by using the ApopNexin apoptosis detection kit, and viewing the morphological changes in the chromatin structure stained with 4′,6-diamidino-2-phenylindole (DAPI) under the inverted fluorescence microscope. It has been found that reducing the concentration of GEM loaded on ME (GEM-ME) from 5μM to 1.67μM by combining it with 3.33μM of ATV in a ME formulation (GEM/2ATV-ME) has preserved the strong cytotoxicity of GEM-ME against HCT116 cells. The current study proved that formulating GEM with ATV in ME has improved the therapeutic potential of GEM and ATV as anticancer drugs.


2020 ◽  
Vol 27 (13) ◽  
pp. 2118-2132 ◽  
Author(s):  
Aysegul Hanikoglu ◽  
Hakan Ozben ◽  
Ferhat Hanikoglu ◽  
Tomris Ozben

: Elevated Reactive Oxygen Species (ROS) generated by the conventional cancer therapies and the endogenous production of ROS have been observed in various types of cancers. In contrast to the harmful effects of oxidative stress in different pathologies other than cancer, ROS can speed anti-tumorigenic signaling and cause apoptosis of tumor cells via oxidative stress as demonstrated in several studies. The primary actions of antioxidants in cells are to provide a redox balance between reduction-oxidation reactions. Antioxidants in tumor cells can scavenge excess ROS, causing resistance to ROS induced apoptosis. Various chemotherapeutic drugs, in their clinical use, have evoked drug resistance and serious side effects. Consequently, drugs having single-targets are not able to provide an effective cancer therapy. Recently, developed hybrid anticancer drugs promise great therapeutic advantages due to their capacity to overcome the limitations encountered with conventional chemotherapeutic agents. Hybrid compounds have advantages in comparison to the single cancer drugs which have usually low solubility, adverse side effects, and drug resistance. This review addresses two important treatments strategies in cancer therapy: oxidative stress induced apoptosis and hybrid anticancer drugs.


Author(s):  
Menghan Gao ◽  
Hong Deng ◽  
Weiqi Zhang

: Hyaluronan (HA) is a natural linear polysaccharide that has excellent hydrophilicity, biocompatibility, biodegradability, and low immunogenicity, making it one of the most attractive biopolymers used for biomedical researches and applications. Due to the multiple functional sites on HA and its intrinsic affinity for CD44, a receptor highly expressed on various cancer cells, HA has been widely engineered to construct different drug-loading nanoparticles (NPs) for CD44- targeted anti-tumor therapy. When a cocktail of drugs is co-loaded in HA NP, a multifunctional nano-carriers could be obtained, which features as a highly effective and self-targeting strategy to combat the cancers with CD44 overexpression. The HA-based multidrug nano-carriers can be a combination of different drugs, various therapeutic modalities, or the integration of therapy and diagnostics (theranostics). Up to now, there are many types of HA-based multidrug nano-carriers constructed by different formulation strategies including drug co-conjugates, micelles, nano-gels and hybrid NP of HA and so on. This multidrug nano-carrier takes the full advantages of HA as NP matrix, drug carriers and targeting ligand, representing a simplified and biocompatible platform to realize the targeted and synergistic combination therapy against the cancers. In this review, recent progresses about HA-based multidrug nano-carriers for combination cancer therapy are summarized and its potential challenges for translational applications have been discussed.


2020 ◽  
Vol 8 (2) ◽  
pp. 79-90
Author(s):  
Arjun Sharma ◽  
Pravir Kumar ◽  
Rashmi K. Ambasta

Background: Silencing of several genes is critical for cancer therapy. These genes may be apoptotic gene, cell proliferation gene, DNA synthesis gene, etc. The two subunits of Ribonucleotide Reductase (RR), RRM1 and RRM2, are critical for DNA synthesis. Hence, targeting the blockage of DNA synthesis at tumor site can be a smart mode of cancer therapy. Specific targeting of blockage of RRM2 is done effectively by SiRNA. The drawbacks of siRNA delivery in the body include the poor uptake by all kinds of cells, questionable stability under physiological condition, non-target effect and ability to trigger the immune response. These obstacles may be overcome by target delivery of siRNA at the tumor site. This review presents a holistic overview regarding the role of RRM2 in controlling cancer progression. The nanoparticles are more effective due to specific characteristics like cell membrane penetration capacity, less toxicity, etc. RRM2 have been found to be elevated in different types of cancer and identified as the prognostic and predictive marker of the disease. Reductase RRM1 and RRM2 regulate the protein and gene expression of E2F, which is critical for protein expression and progression of cell cycle and cancer. The knockdown of RRM2 leads to apoptosis via Bcl2 in cancer. Both Bcl2 and E2F are critical in the progression of cancer, hence a gene that can affect both in regulating DNA replication is essential for cancer therapy. Aim: The aim of the review is to identify the related gene whose silencing may inhibit cancer progression. Conclusion: In this review, we illuminate the critical link between RRM-E2F, RRM-Bcl2, RRM-HDAC for the therapy of cancer. Altogether, this review presents an overview of all types of SiRNA targeted for cancer therapy with special emphasis on RRM2 for controlling the tumor progression.


Sign in / Sign up

Export Citation Format

Share Document