scholarly journals The Correlation Between Biofilm Formation and Drug Resistance in Nosocomial Isolates of Acinetobacter baumannii

2015 ◽  
Vol 2 (2) ◽  
pp. 23954-23954 ◽  
Author(s):  
Shiva Emami ◽  
Fereshteh Eftekhar
Author(s):  
Berrin Celik

Aims: The aim of this study was to determine correlation between biofilm formation and drug resistance in clinical isolates of Acinetobacter baumannii. Study Design: Bacteriological study. Place and Duration of Study: Laboratory of Microbiology of BilecikSeyhEdebali University, in Turkey, between April 2019 and November 2019. Methodology: Antibiotic susceptibility of the strains were determined using Kirby-Bauer disc diffusion method in accordance with the principles of Clinical and Laboratory Standards Institute (CLSI). Biofilm presence in A. baumanniiwas identified by the quantitative method. the isolates were incubated in nutrient agar and was prepared from fresh cultures in tubes containing glucose-Luria-Bertani (LB) medium. The A. baumannii(ATCC 19606) type strain was used for comparisons. Results: In this study was determined the relationship between the biofilm production capacity of the A. baumanniibacteria and its antimicrobial resistance. According to the results obtained from our study, the highest resistance rate (%) was found ceftazidime and piperacillin (95 %) while the highest sensitivity was found colistin (96.6 %) and tigecycline (86.6 %) of the total 60 Acinetobacter baumannii isolates. In addition, the presence of biofilm in the bacteria was defined by quantitative method using microplate. In this study, biofilm was positive in 54 (90 %) isolates and it has been found 51 (85%) of the biofilm positive isolates to be resistant to piperacillin, ceftazidime, cefotaxime and meropenem. Conclusion: As a result, there is a positive relationship between biofilm formation and antibiotic resistance in thesebacteria.


2021 ◽  
pp. 15-23

Introduction: The aim of the study was the analysis of occurrence of genetic determinants of multi-drug resistance and the assessment of genetic relationship among Acinetobacter baumannii strains. Methods: Multiplex-PCR method was performed in order to: (1) confirm the phenotypic identification and (2) detect the presence of CHDL oxacillinases in the group of thirty A.baumannii strains. Further PCR studies included the analysis of the occurrence of genetic determinants associated with efflux pump, insertion sequence and biofilm formation. The relationship between bacterial strains was assayed using 6 primers in RAPD-PCR method. Results: Detection of the blaOXA-51-like gene confirmed that the strains belong to the A. baumannii species. In the multiplex-PCR, the presence of the blaOXA-23-like and blaOXA-40-like genes was detected in 3 (10%) and 27 (90%) isolates, respectively. Moreover, some strains showed the coexistence of the blaOXA-51-like and blaOXA-23-like genes (10%, n=3) or blaOXA-51-like and blaOXA-40-like (90%, n=27). In the group of analysed strains the presence of the efflux pump gene (adeA) and the insertion sequence ISAba1 were demonstrated in all tested isolates. Biofilm-related genes (abaI, csuE) were found in 100% and 97% (n=29) tested strains adequately. The RAPD-PCR studies revealed the presence of 10 unrelated genotypes. Conclusions: The obtained results suggest that the phenomenon of multi-drug resistance in the studied A. baumannii strains could be attributed to the occurrence of CHDL oxacillinases, AdeABC efflux pump, insertion sequence ISAba1 and the biofilm formation.


2020 ◽  
Vol 26 ◽  
Author(s):  
Madison Tonkin ◽  
Shama Khan ◽  
Mohmmad Younus Wani ◽  
Aijaz Ahmad

: Quorum sensing is defined as cell to cell communication between microorganisms, which enables microorganisms to behave as multicellular organisms. Quorum sensing enables many collaborative benefits such as synchronisation of virulence factors and biofilm formation. Both quorum sensing as well as biofilm formation encourage the development of drug resistance in microorganisms. Biofilm formation and quorum sensing are causally linked to each other and play role in the pathogenesis of microorganisms. With the increasing drug resistance against the available antibiotics and antifungal medications, scientists are combining different options to develop new strategies. Such strategies rely on the inhibition of the communication and virulence factors rather than on killing or inhibiting the growth of the microorganisms. This review encompasses the communication technique used by microorganisms, how microorganism resistance is linked to quorum sensing and various chemical strategies to combat quorum sensing and thereby drug resistance. Several compounds have been identified as quorum sensing inhibitors and are known to be effective in reducing resistance as they do not kill the pathogens but rather disrupt their communication. Natural compounds have been identified as anti-quorum sensing agents. However, natural compounds present several related disadvantages. Therefore, the need for the development of synthetic or semi-synthetic compounds has arisen. This review argues that anti-quorum sensing compounds are effective in disrupting quorum sensing and could therefore be effective in reducing microorganism drug resistance.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 833
Author(s):  
Camila Pimentel ◽  
Casin Le ◽  
Marisel R. Tuttobene ◽  
Tomas Subils ◽  
Krisztina M. Papp-Wallace ◽  
...  

Acinetobacter baumannii has become a serious threat to human health due to its extreme antibiotic resistance, environmental persistence, and capacity to survive within the host. Two A. baumannii strains, A118 and AB5075, commonly used as model systems, and three carbapenem-resistant strains, which are becoming ever more dangerous due to the multiple drugs they can resist, were exposed to 3.5% human serum albumin (HSA) and human serum (HS) to evaluate their response with respect to antimicrobial resistance, biofilm formation, and quorum sensing, all features responsible for increasing survival and persistence in the environment and human body. Expression levels of antibiotic resistance genes were modified differently when examined in different strains. The cmlA gene was upregulated or downregulated in conditions of exposure to 3.5% HSA or HS depending on the strain. Expression levels of pbp1 and pbp3 tended to be increased by the presence of HSA and HS, but the effect was not seen in all strains. A. baumannii A118 growing in the presence of HS did not experience increased expression of these genes. Aminoglycoside-modifying enzymes were also expressed at higher or lower levels in the presence of HSA or HS. Still, the response was not uniform; in some cases, expression was enhanced, and in other cases, it was tapered. While A. baumannii AB5075 became more susceptible to rifampicin in the presence of 3.5% HSA or HS, strain A118 did not show any changes. Expression of arr2, a gene involved in resistance to rifampicin present in A. baumannii AMA16, was expressed at higher levels when HS was present in the culture medium. HSA and HS reduced biofilm formation and production of N-Acyl Homoserine Lactone, a compound intimately associated with quorum sensing. In conclusion, HSA, the main component of HS, stimulates a variety of adaptative responses in infecting A. baumannii strains.


2021 ◽  
Vol 16 (1) ◽  
pp. 1934578X2098774
Author(s):  
Jinpeng Zou ◽  
Yang Liu ◽  
Ruiwei Guo ◽  
Yu Tang ◽  
Zhengrong Shi ◽  
...  

The drug resistance of Pseudomonas aeruginosa is a worldwide problem due to its great threat to human health. A crude extract of Angelica dahurica has been proved to have antibacterial properties, which suggested that it may be able to inhibit the biofilm formation of P. aeruginosa; initial exploration had shown that the crude extract could inhibit the growth of P. aeruginosa effectively. After the adaptive dose of coumarin was confirmed to be a potential treatment for the bacteria’s drug resistance, “coumarin-antibiotic combination treatments” (3 coumarins—simple coumarin, imperatorin, and isoimperatorin—combined with 2 antibiotics—ampicillin and ceftazidime) were examined to determine their capability to inhibit P. aeruginosa. The final results showed that (1) coumarin with either ampicillin or ceftazidime significantly inhibited the biofilm formation of P. aeruginosa; (2) coumarin could directly destroy mature biofilms; and (3) the combination treatment can synergistically enhance the inhibition of biofilm formation, which could significantly reduce the usage of antibiotics and bacterial resistance. To sum up, a coumarin-antibiotic combination treatment may be a potential way to inhibit the biofilm growth of P. aeruginosa and provides a reference for antibiotic resistance treatment.


2017 ◽  
Vol 21 (1) ◽  
pp. 27-34 ◽  
Author(s):  
Tarek Zmantar ◽  
Rihab Ben Slama ◽  
Kais Fdhila ◽  
Bochra Kouidhi ◽  
Amina Bakhrouf ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Helal F. Hetta ◽  
Israa M. S. Al-Kadmy ◽  
Saba Saadoon Khazaal ◽  
Suhad Abbas ◽  
Ahmed Suhail ◽  
...  

AbstractWe aimed to isolate Acinetobacter baumannii (A. baumannii) from wound infections, determine their resistance and virulence profile, and assess the impact of Silver nanoparticles (AgNPs) on the bacterial growth, virulence and biofilm-related gene expression. AgNPs were synthesized and characterized using TEM, XRD and FTIR spectroscopy. A. baumannii (n = 200) were isolated and identified. Resistance pattern was determined and virulence genes (afa/draBC, cnf1, cnf2, csgA, cvaC, fimH, fyuA, ibeA, iutA, kpsMT II, PAI, papC, PapG II, III, sfa/focDE and traT) were screened using PCR. Biofilm formation was evaluated using Microtiter plate method. Then, the antimicrobial activity of AgNPs was evaluated by the well-diffusion method, growth kinetics and MIC determination. Inhibition of biofilm formation and the ability to disperse biofilms in exposure to AgNPs were evaluated. The effect of AgNPs on the expression of virulence and biofilm-related genes (bap, OmpA, abaI, csuA/B, A1S_2091, A1S_1510, A1S_0690, A1S_0114) were estimated using QRT-PCR. In vitro infection model for analyzing the antibacterial activity of AgNPs was done using a co-culture infection model of A. baumannii with human fibroblast skin cell line HFF-1 or Vero cell lines. A. baumannii had high level of resistance to antibiotics. Most of the isolates harbored the fimH, afa/draBC, cnf1, csgA and cnf2, and the majority of A. baumannii produced strong biofilms. AgNPs inhibited the growth of A. baumannii efficiently with MIC ranging from 4 to 25 µg/ml. A. baumannii showed a reduced growth rate in the presence of AgNPs. The inhibitory activity and the anti-biofilm activity of AgNPs were more pronounced against the weak biofilm producers. Moreover, AgNPs decreased the expression of kpsMII , afa/draBC,bap, OmpA, and csuA/B genes. The in vitro infection model revealed a significant antibacterial activity of AgNPs against extracellular and intracellular A. baumannii. AgNPs highly interrupted bacterial multiplication and biofilm formation. AgNPs downregulated the transcription level of important virulence and biofilm-related genes. Our findings provide an additional step towards understanding the mechanisms by which sliver nanoparticles interfere with the microbial spread and persistence.


2018 ◽  
Vol 201 (2) ◽  
Author(s):  
Carly Ching ◽  
Brendan Yang ◽  
Chineme Onwubueke ◽  
David Lazinski ◽  
Andrew Camilli ◽  
...  

ABSTRACTAcinetobacter baumanniiis a Gram-negative opportunistic pathogen that is known to survive harsh environmental conditions and is a leading cause of hospital-acquired infections. Specifically, multicellular communities (known as biofilms) ofA. baumanniican withstand desiccation and survive on hospital surfaces and equipment. Biofilms are bacteria embedded in a self-produced extracellular matrix composed of proteins, sugars, and/or DNA. Bacteria in a biofilm are protected from environmental stresses, including antibiotics, which provides the bacteria with selective advantage for survival. Although some gene products are known to play roles in this developmental process inA. baumannii, mechanisms and signaling remain mostly unknown. Here, we find that Lon protease inA. baumanniiaffects biofilm development and has other important physiological roles, including motility and the cell envelope. Lon proteases are found in all domains of life, participating in regulatory processes and maintaining cellular homeostasis. These data reveal the importance of Lon protease in influencing keyA. baumanniiprocesses to survive stress and to maintain viability.IMPORTANCEAcinetobacter baumanniiis an opportunistic pathogen and is a leading cause of hospital-acquired infections.A. baumanniiis difficult to eradicate and to manage, because this bacterium is known to robustly survive desiccation and to quickly gain antibiotic resistance. We sought to investigate biofilm formation inA. baumannii, since much remains unknown about biofilm formation in this bacterium. Biofilms, which are multicellular communities of bacteria, are surface attached and difficult to eliminate from hospital equipment and implanted devices. Our research identifies multifaceted physiological roles for the conserved bacterial protease Lon inA. baumannii. These roles include biofilm formation, motility, and viability. This work broadly affects and expands understanding of the biology ofA. baumannii, which will permit us to find effective ways to eliminate the bacterium.


2013 ◽  
Vol 58 (2) ◽  
pp. 828-832 ◽  
Author(s):  
Spyros Pournaras ◽  
Aggeliki Poulou ◽  
Konstantina Dafopoulou ◽  
Yassine Nait Chabane ◽  
Ioulia Kristo ◽  
...  

ABSTRACTTwo colistin-susceptible/colistin-resistant (Cols/Colr) pairs ofAcinetobacter baumanniistrains assigned to international clone 2, which is prevalent worldwide, were sequentially recovered from two patients after prolonged colistin administration. Compared with the respective Colsisolates (Ab248 and Ab299, both having a colistin MIC of 0.5 μg/ml), both Colrisolates (Ab249 and Ab347, with colistin MICs of 128 and 32 μg/ml, respectively) significantly overexpressedpmrCABgenes, had single-amino-acid shifts in the PmrB protein, and exhibited significantly slower growth. The Colrisolate Ab347, tested by proteomic analysis in comparison with its Colscounterpart Ab299, underexpressed the proteins CsuA/B and C from thecsuoperon (which is necessary for biofilm formation). This isolate also underexpressed aconitase B and different enzymes involved in the oxidative stress response (KatE catalase, superoxide dismutase, and alkyl hydroperoxide reductase), suggesting a reduced response to reactive oxygen species (ROS) and, consequently, impaired colistin-mediated cell death through hydroxyl radical production. Colsisolates that were indistinguishable by macrorestriction analysis from Ab299 caused six sequential bloodstream infections, and isolates indistinguishable from Ab248 caused severe soft tissue infection, while Colrisolates indistinguishable from Ab347 and Ab249 were mainly colonizers. In particular, a Colsisolate identical to Ab299 was still invading the bloodstream 90 days after the colonization of this patient by Colrisolates. These observations indicate considerably lower invasiveness ofA. baumanniiclinical isolates following the development of colistin resistance.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Zahra Farshadzadeh ◽  
Maryam Pourhajibagher ◽  
Behrouz Taheri ◽  
Alireza Ekrami ◽  
Mohammad Hossein Modarressi ◽  
...  

Abstract Background The global emergence of Acinetobacter baumannii resistance to most conventional antibiotics presents a major therapeutic challenge and necessitates the discovery of new antibacterial agents. The purpose of this study was to investigate in vitro and in vivo anti-biofilm potency of dermcidin-1L (DCD-1L) against extensively drug-resistant (XDR)-, pandrug-resistant (PDR)-, and ATCC19606-A. baumannii. Methods After determination of minimum inhibitory concentration (MIC) of DCD-1L, in vitro anti-adhesive and anti-biofilm activities of DCD-1L were evaluated. Cytotoxicity, hemolytic activity, and the effect of DCD-1L treatment on the expression of various biofilm-associated genes were determined. The inhibitory effect of DCD-1L on biofilm formation in the model of catheter-associated infection, as well as, histopathological examination of the burn wound sites of mice treated with DCD-1L were assessed. Results The bacterial adhesion and biofilm formation in all A. baumannii isolates were inhibited at 2 × , 4 × , and 8 × MIC of DCD-1L, while only 8 × MIC of DCD-1L was able to destroy the pre-formed biofilm in vitro. Also, reduce the expression of genes involved in biofilm formation was observed following DCD-1L treatment. DCD-1L without cytotoxic and hemolytic activities significantly reduced the biofilm formation in the model of catheter-associated infection. In vivo results showed that the count of A. baumannii in infected wounds was significantly decreased and the promotion in wound healing by the acceleration of skin re-epithelialization in mice was observed following treatment with 8 × MIC of DCD-1L. Conclusions Results of this study demonstrated that DCD-1L can inhibit bacterial attachment and biofilm formation and prevent the onset of infection. Taking these properties together, DCD-1L appears as a promising candidate for antimicrobial and anti-biofilm drug development.


Sign in / Sign up

Export Citation Format

Share Document