scholarly journals Design Implications of Model-Generated Urban Data

2019 ◽  
Vol 16 (2) ◽  
pp. 50-63
Author(s):  
Ljubomir Jankovic

The staggering complexity of urban environment and long timescales in the causal mechanisms prevent designers to fully understand the implications of their design interventions. In order to investigate these causal mechanisms and provide measurable trends, a model that partially replicates urban complexity has been developed. Using a cellular automata approach to model land use types and markets for products, services, labour and property, the model has enabled numerical experiments to be carried out. The results revealed causal mechanisms and performance metrics obtained in a much shorter timescale than the real-life processes, pointing to a number of design implications for urban environments.

Author(s):  
Jonathan C. Corbett ◽  
Navid Goudarzi ◽  
Mohammadamin Sheikhshahrokhdehkordi

Abstract This research explores utilizing distributed wind turbines in the built environment computationally. The targeted wind turbine design is an unconventional ducted turbine, called Wind Tower technology that its operation and performance metrics have been studied in earlier works in the team. Wind Tower is an established architectural technology that operates by catching wind and directing it into buildings, providing natural ventilation to support HVAC systems, and thus reducing cooling costs in urban environments. Wind power has long struggled to meet expectations in built (urban) environments. By combining wind towers at different cross sections with wind turbines, one might develop a device which provides natural ventilation and produces power in spite of a hostile wind environment. The preliminary results suggest that the maximum potential for a wind tower-turbine combination appears to be 700-1.46 kW under idealized conditions with a 4 m/s site dominant wind speed. This suggests that wind towers might be viable for power harvesting in both remote and grid connected regions. Further analysis suggested that additional turbine performance enhancements are needed to bring the turbine real power production closer to that ideal.


Author(s):  
Toru Ishikawa

AbstractThis article discusses the development of compact and functionally integrated urban environments from the perspective of local residents, focusing on their psychological evaluations of mixed land use and performance-based regulation. It demonstrates the significance of residents’ perceptions and attitudes in the achievement of flexibility required for urban planning in a shrinking society. To promote planned concentration of various functions in an urban area in an appropriate way, as in the development of compact cities in a multi-polar network advocated by the Location Normalization Plan, it will have more importance than ever to conceive planning that takes the characteristics of both a region and its residents into account.


2020 ◽  
Vol 23 (3) ◽  
pp. 445-455 ◽  
Author(s):  
Ingo Kowarik

Abstract Urban ecology is a well-established integrative discipline with many historical roots. One of the eminent pioneers of urban ecology is the German ecologist Herbert Sukopp, who works in Berlin since the late 1950s and is often referred to as the founder of the "Berlin School of Urban Ecology". On the occasion of his 90th anniversary in 2020, this paper aims to recognize and commemorate the major contributions of Sukopp to the field of urban ecology, based on his scientific work and on results of an online survey on his perception in the international scientific community. Sukopp’s contributions were groundbreaking for the establishment of urban ecology. Specifically, his work furthered: (1) the performance of comprehensive biodiversity studies across all land-use types within the city, in relation to the specifics of urban environments; (2) the establishment of modern approaches of nature conservation in cities and their integration into all land-use types, and the city as a whole; (3) the formation of a multidisciplinary conceptual basis of urban ecology as a modern science, with combined scientific and applied perspectives, ultimately aiming at the preservation and further development of nature within cities for the benefit of urban residents. Herbert Sukopp is thus an important and inspiring pioneer in the field of urban ecology.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sifeng Wang ◽  
L. M. Chu

Abstract Background Communal roosting is a common avian social behaviour, which potentially provides foraging benefits, predation avoidance or thermoregulation in birds. To identify the crucial environmental factors associated with roost site selection, most studies have focused on the comparison of physical characteristics between roosts and non-roosts. However, the differences among roosts have usually been neglected and the causes of roost switching have seldom been investigated. Methods To explore the variations among roost sites and assess the most influential environmental factors related to seasonal roost switching, we conducted a 105-day observation on an introduced population of critically endangered Yellow-crested Cockatoo (Cacatua sulphurea) in an urban environment in Hong Kong from 2014 to 2016. We identified seven roost sites that were occupied in different seasons and then measured their microhabitat characteristics in terms of land use types, human disturbance and microclimate temperature. To quantify these differences, we used Pearson’s chi-squared test, partial least squares determinant analysis (PLS-DA) and one-way repeated measures ANOVA, respectively. Results Our results distinguished roost sites occupied in three seasons, i.e. spring, summer and winter roosts, using several microhabitat characteristics. The land use types were significantly associated with roosts, where spring roosts were usually located in tree-dominated areas, which are the major feeding grounds. The discriminant analysis on human disturbance variables indicated that summer roosts were positively associated with night illumination. The microhabitat temperatures of winter roosts were significantly higher than those of most other roosts on cold nights. Conclusions The results highlighted significant variations among roosts, and seasonal roost switching was likely driven by specific microhabitat characteristics of each roost site, such as microclimate. It also helps us understand the behavioural adaptation of birds to urban environments.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Jun Yang ◽  
Weiling Liu ◽  
Yonghua Li ◽  
Xueming Li ◽  
Quansheng Ge

The spatial evolution of land use in Jinzhou area was simulated using fuzzy cellular automata to determine all factors influencing urban land use change. For this purpose, land use data of multiple sources and remote sensing images from 2003 to 2015 were analyzed. The following results were obtained: (1) real land use data and simulation data for 2015 were tested using four indices. Under the 5 m × 5 m scale, the model shows good performance for simulation of areas with various land use types. (2) Among simulations under four scenarios, the effect of traffic guidance on the development of construction land was more distinct under the economic development mode, which clearly showed the phenomenon of “agglomeration” along major traffic lines. (3) Jinshitan Street is adjacent to the sea, and land use changes are significant under the 4th scenario, and thus related departments should pay more attention. (4) Shortcomings of conventional cellular automata model in processing complex systems could be mitigated through the integration of fuzzy sets.


2019 ◽  
Vol 11 (14) ◽  
pp. 1722 ◽  
Author(s):  
Joseph Naughton ◽  
Walter McDonald

Urbanization and climate change are driving increases in urban land surface temperatures that pose a threat to human and environmental health. To address this challenge, we must be able to observe land surface temperatures within spatially complex urban environments. However, many existing remote sensing studies are based upon satellite or aerial imagery that capture temperature at coarse resolutions that fail to capture the spatial complexities of urban land surfaces that can change at a sub-meter resolution. This study seeks to fill this gap by evaluating the spatial variability of land surface temperatures through drone thermal imagery captured at high-resolutions (13 cm). In this study, flights were conducted using a quadcopter drone and thermal camera at two case study locations in Milwaukee, Wisconsin and El Paso, Texas. Results indicate that land use types exhibit significant variability in their surface temperatures (3.9–15.8 °C) and that this variability is influenced by surface material properties, traffic, weather and urban geometry. Air temperature and solar radiation were statistically significant predictors of land surface temperature (R2 0.37–0.84) but the predictive power of the models was lower for land use types that were heavily impacted by pedestrian or vehicular traffic. The findings from this study ultimately elucidate factors that contribute to land surface temperature variability in the urban environment, which can be applied to develop better temperature mitigation practices to protect human and environmental health.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yuebo Su ◽  
Bowen Cui ◽  
Yunjian Luo ◽  
Jia Wang ◽  
Xuming Wang ◽  
...  

An increasing number of studies have focused on the response and adaptation of plants to urbanization by comparing differences in leaf functional traits between urban and rural sites. However, considerable uncertainties remain because differences in land-use type have not frequently been taken into account when assessing the effect of urbanization on leaf traits. In this study, we sampled the needles of Chinese pine (Pinus tabuliformis Carr.) in areas with three land-use types (roadsides, parks, and neighborhoods) along an urban–rural gradient in Beijing, China to determine the effect of urbanization on leaf functional traits. There were significant differences in the values of leaf functional traits between the needles of the current and previous year and across land-use types. Pines growing on roadsides had leaves with smaller length, width, and area, as well as lower stomatal density, compared with those growing in parks and neighborhoods. This implies that on roadsides, plant capacity to acquire resources (e.g., light and carbon dioxide) was degraded. Stomatal density, leaf width, and leaf P concentration increased with increasing distance from the city center, while leaf K concentration decreased with increasing distance from the city center. Importantly, there were significant differences in the urban–rural gradient of leaf functional traits between leaves of different ages, and across land-use types. Leaf age was the most important factor influencing leaf nutrient traits, while land-use type was the most important factor influencing leaf morphological traits in urban environments. Thus, considering the effects of the plant characteristic and land-use type on traits is important for assessing the urban–rural gradients of plant functional traits.


Author(s):  
Toby J. Lloyd-Jones ◽  
Juergen Gehrke ◽  
Jason Lauder

We assessed the importance of outline contour and individual features in mediating the recognition of animals by examining response times and eye movements in an animal-object decision task (i.e., deciding whether or not an object was an animal that may be encountered in real life). There were shorter latencies for animals as compared with nonanimals and performance was similar for shaded line drawings and silhouettes, suggesting that important information for recognition lies in the outline contour. The most salient information in the outline contour was around the head, followed by the lower torso and leg regions. We also observed effects of object orientation and argue that the usefulness of the head and lower torso/leg regions is consistent with a role for the object axis in recognition.


Author(s):  
Trần Thanh Đức

This research carried out in Huong Vinh commune, Huong Tra town, Thua Thien Hue province aimed to identify types of land use and soil characteristics. Results showed that five crops are found in Huong Vinh commune including rice, peanut, sweet potato, cassava and vegetable. There are two major soil orders with four soil suborders classified by FAO in Huong Vinh commune including Fluvisols (Dystric Fluvisols<em>, </em>Gleyic Fluvisols and Cambic Fluvisols) and Arenosols (Haplic Arenosols). The results from soil analysis showed that three soil suborders including Dystric Fluvisols<em>, </em>Gleyic Fluvisols and Cambic Fluvisols belonging to Fluvisols were clay loam in texture, low pH, low in OC, total N, total P<sub>2</sub>O<sub>5</sub> and total K<sub>2</sub>O. Meanwhile, the Haplic Arenosols was loamy sand in texture, poor capacity to hold OC, total N, total P<sub>2</sub>O<sub>5</sub> and total K<sub>2</sub>O


Sign in / Sign up

Export Citation Format

Share Document