scholarly journals Application of Azoxystrobin Fungicide Improves Drought Tolerance in Tomato, via Enhancing Physio-Biochemical and Anatomical Feature

2019 ◽  
Vol 76 ◽  
pp. 34-49
Author(s):  
Abdelhadi A.I. Ali ◽  
El Sayed M. Desoky ◽  
Mostafa M. Rady

To investigate whether the fungicide Azoxystrobin improves the potential to maintain physio-biochemical functions under drought, tomato plants were applied with Azoxystrobin under either well-watered and deficit irrigation conditions. Drought-stressed tomato plants showed significant reductions in most tested parameters of physiology [cell membrane stability (CMS), relative water content (RWC), relative water loss (RWL) and chlorophylls], growth attributes and leaflet and main stem anatomical features, while exhibited increases in contents of proline and total phenols, activities of catalase (CAT), peroxidase (POD) and polyphenol oxidase (PPO), fresh (FW) and dry (DW) weights of roots, and leaflet spongy tissue thickness compared to well-watered control plants. Under full irrigation, Azoxystrobin treatment significantly increased RWC and chlorophyll content, POD and PPO activities, root DW, number of fruits per plant and many features of leaflet and main stem, while significantly decreased CMS and RWL, root, shoot and plant lengths, shoot and plant FW, and stem xylem tissue thickness compared to the control plants sprayed with water. However, Azoxystrobin treatment ameliorated drought stress in tomato plants and significantly increased CMS and free proline content, activities of CAT, POD and PPO, and contents of free and total phenols, and root DW and number of fruits per plant, in addition to spongy tissue thickness of leaflet, but not affected chlorophylls and carotenoids contents, root FW, plant DW and most of anatomical features compared to the stressed plants without Azoxystrobin treatment. These results support that Azoxystrobin foliar application may have a positive effect on well-watered and drought-stressed tomato plants.

2013 ◽  
Vol 42 (1) ◽  
pp. 31-44 ◽  
Author(s):  
Samia Ageeb Akladious ◽  
Salwa Mohamed Abbas

Tomato plants (Lycopersicon esculentum Mill.) treated with 8 and 16% of sea water reduced growth parameters and chemical constituents. Both aspartic acid and glutathione increased plant growth, anthocyanin, ?-tocopherol, ascorbic acid and enzymatic activities. Increased endogenous amino acids led to positive changes in protein electrophoresis and caused obvious changes in anatomical features of the stems. The effect of aspartic acid was superior to that of glutathione in increasing plant growth. Under low saline conditions, maximum plant growth was obtained from plants treated with aspartic acid and 8% of sea water, followed by 4%. Data revealed that antioxidants could partially alleviate the harmful effects of salinity. DOI: http://dx.doi.org/10.3329/bjb.v42i1.15822 Bangladesh J. Bot. 42(1): 31-43, 2013 (June)


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1349
Author(s):  
Ahlam Khalofah ◽  
Mona Kilany ◽  
Hussein Migdadi

Heavy metals are primarily generated and deposited in the environment, causing phytotoxicity. This work evaluated fenugreek plants’ morpho-physiological and biochemical responses under mercury stress conditions toward Ag nanoparticles and Sphingobacterium ginsenosidiumtans applications. The fabrication of Ag nanoparticles by Thymus vulgaris was monitored and described by UV/Vis analysis, FTIR, and SEM. The effect of mercury on vegetative growth was determined by measuring the root and shoots length, the number and area of leaves, the relative water content, and the weight of the green and dried plants; appraisal of photosynthetic pigments, proline, hydrogen peroxide, and total phenols content were also performed. In addition, the manipulation of Ag nanoparticles, S. ginsenosidiumtans, and their combination were tested for mercury stress. Here, Ag nanoparticles were formed at 420 nm with a uniform cuboid form and size of 85 nm. Interestingly, the gradual suppression of vegetal growth and photosynthetic pigments by mercury, Ag nanoparticles, and S. ginsenosidiumtans were detected; however, carotenoids and anthocyanins were significantly increased. In addition, proline, hydrogen peroxide, and total phenols content were significantly increased because mercury and S. ginsenosidiumtans enhance this increase. Ag nanoparticles achieve higher levels by the combination. Thus, S. ginsenosidiumtans and Ag nanoparticles could have the plausible ability to relieve and combat mercury’s dangerous effects in fenugreek.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 599
Author(s):  
Živilė Tarasevičienė ◽  
Aloyzas Velička ◽  
Aurelija Paulauskienė

Phenolic compounds have a number of benefits to human health and can be used as preventive compounds for the development of some chronic diseases. Mentha plants are not only a good source of essential oils, but also contain significant levels of wide range of phenolic compounds. The aim of this research was to investigate the possibility to increase phenols content in Mentha plants under the foliar application with L-phenylalanine, L-tryptophan, L-tyrosine at two concentrations (100 mg L−1 and 200 mg L−1) and to create preconditions for using this plant for even more diverse purposes. Quantitative and qualitative analyses of phenols in mints were performed by HPLC method. Foliar application of amino acids increased the total phenol content from 1.22 to 3.51 times depending on the treatment and mint variety. The most pronounced foliar application to total phenols content was tryptophane especially in Mentha piperita “Swiss”. Mentha piperita “Swiss” was affected most by foliar application and the amount of total phenolic acids depending on the treatment ranged from 159.25 to 664.03 mg 100 g−1 (DW), respectively, non-sprayed and sprayed with tryptophane 100 mg L−1. Our results suggest that the biophenol content varies according to such factors as foliar application and variety, and every single mint variety has individual response to different applications of amino acids.


2015 ◽  
Vol 43 (1) ◽  
pp. 124-130 ◽  
Author(s):  
Seyed Ahmad KALANTAR AHMADI ◽  
Ali EBADI ◽  
Jahanfar DANESHIAN ◽  
Soodabeh JAHANBAKHSH ◽  
Seyed Ataollah SIADAT ◽  
...  

A split-plot experiment arranged in a randomized complete blocks design with three replications was carried out in Safiabad Agricultural Research Center of Dezful in order to investigate the effects of foliar applications of ascorbic acid (AsA), salicylic acid (SA) and methanol (Me), under deficit irrigation conditions, in canola; there were 3 levels of irrigation as the main factor (irrigation after 70 mm evaporation from the pan as control, cessation of irrigation at the flowering stage and cessation of irrigation at the appearance of siliques) and 10 levels of foliar applications as sub-factor (100, 200 and 300 mg.l-1AsA; 100, 200 and 300 µM SA; 10, 20 and 30% (w/v) methanol; and foliar application of distilled water as control). Foliar applications were made during both budding and initiation of flowering stages. Results indicated that antioxidant enzymes showed different responses to deficit irrigation and foliar application treatments. Maximum catalase (CAT) and polyphenol oxidase (PPO) activities were observed under cessation of irrigation at flowering stage and foliar application of 300 µM SA, while ascorbate peroxidase (APX) reached its maximum activity under the same irrigation conditions and foliar application of 300 mg.l-1AsA. SA had more influence to increase in CAT and PPO activity under cessation of irrigation at flowering stage. The relative water content (RWC) was also decreased due to the drought stress caused by the cessation of irrigation. Foliar application of SA (100 μM) and Me (10% w/v) had more influence to maintain RWC compared to ascorbic acid under irrigation cessation at flowering stage.


2008 ◽  
Vol 43 (8) ◽  
pp. 1017-1023 ◽  
Author(s):  
Daniel Oliveira Jordão do Amaral ◽  
Marleide Magalhães de Andrade Lima ◽  
Luciane Vilela Resende ◽  
Márcia Vanusa da Silva

The objective of this work was to determine the transcript profile of tomato plants (Lycopersicon esculentum Mill.), during Fusarium oxysporum f. sp. lycopersici infection and after foliar application of salicylic acid. The suppression subtractive hybridization (SSH) technique was used to generate a cDNA library enriched for transcripts differentially expressed. A total of 307 clones was identified in two subtractive libraries, which allowed the isolation of several defense-related genes that play roles in different mechanisms of plant resistance to phytopathogens. Genes with unknown roles were also isolated from the two libraries, which indicates the possibility of identifying new genes not yet reported in studies of stress/defense response. The SSH technique is effective for identification of resistance genes activated by salicylic acid and F. oxysporum f. sp. lycopersici infection. Not only the application of this technique enables a cost effective isolation of differentially expressed sequences, but also it allows the identification of novel sequences in tomato from a relative small number of sequences.


2021 ◽  
Vol 35 (2) ◽  
Author(s):  
Amine Khoulati ◽  
E. Saalaoui

An experiment was carried out in a greenhouse to study the effect of aqueous extracts of Crocus sativus L. by-products on tomato plants. Three concentrations of tepals and corms were used by fertigation: 1 g/L, 2 g/L, and 3 g/L. The aqueous extract of the stigmas was used as a foliar application at 0.6 g/L. The experiment was carried out in a completely randomized block with three repetitions for each concentration. The concentration of tepal extract at 3 g/L significantly (p≤0.05) increased the plants' height, the chlorophyll a, b content. The same results were observed for the foliar treatment with stigmas; however, there was no effect of tepal extract on the carotenoid content. On the other hand, the concentration 2 g/L of the corms extract had a positive impact (p≤0.05) in the chlorophyll b content while the concentration of 3 g/L increased the plant's height, the chlorophyll a (p≤0.05). Current results indicate that Crocus sativus by-products could improve certain physiological aspects of the recipient plants and new and natural biostimulants.


2021 ◽  
Vol 36 (2) ◽  
pp. 173-175
Author(s):  
Jorge Cunha ◽  
Ilda Caldeira ◽  
Sara Canas

New insights into Viticulture, Enology and Vitivinicultural Economy arise from the fourteen articles published by the Ciência e Técnica Vitivinícola in 2021. Research carried out by several international teams covered a wide range of topics that seek to respond to current main challenges: chemical, morphological and anatomical features of the grapevine cultivars explored to withstand biotic and abiotic stresses; seaweed foliar application to grapevines as an innovative and integrated vineyard management technique; nutritional management of grapevine cultivars under cold climate conditions and under water constraint scenarios; viability and cost-effectiveness of photovoltaic solar energy for wineries; viticultural technologies and the food safety of wine; characterization of grapes and methods for juice production; chemical composition of grape seeds; development of analytical and sensory methodologies; portrait of the wine spirits sector in Portugal and its recent evolution.


2021 ◽  
Vol 72 (4) ◽  
pp. 280
Author(s):  
Mohammad Moradi ◽  
Hamid Dehghani ◽  
Sied Zabihallah Ravari

Improvement of tomato (Lycopersicon esculentum L.) for growth in saline soils is a major goal of tomato breeders. The aim of this study was to identify the genetic combining ability and genetics of salinity tolerance in tomato. Plant materials were grown under normal (NG) and salinity stress (SSG) conditions. Results showed that the genetic controlling mechanism of salinity-related traits and fruit weight is complex and that all genetic components of additive, non-additive and maternal are involved. The nature of gene action for fruit weight and salinity-related traits was significantly affected by salinity stress. Dominance and additive gene action were predominant under NG and SSG, respectively. Under NG, the best general combiner parent for fruit weight was P3 (salt-tolerant with moderate fruit yield). Under SSG, P1 (highly salt-tolerant with low fruit yield) was the best general combiner parent for fruit weight and exhibited high genetic combining ability for K+/Na+, lipoxygenase activity, proline, relative water content, total carbohydrate and cell membrane stability. With the high frequency of genes effective in salt tolerance, the P1 parent appeared as the best specific mating partner with other parents under SSG. Simultaneous selection for fruit weight and surrogate traits (cell membrane stability, proline and relative water content) in a population derived from the P1 × P5 (susceptible with high fruit yield) cross could result in a salt-tolerant tomato genotype.


2016 ◽  
Vol 49 (2) ◽  
pp. 67-85 ◽  
Author(s):  
M.A.M. Elhamahmy ◽  
M.F. Mahmoud ◽  
T.Y. Bayoumi

Abstract Insect damage in canola adversely affects its productivity andquality and is considered one of the most important degrading factors in Egypt. The effect of foliar application of salicylic acid (SA) on aphid populations, growth and yield of canola (Brassica napus, L.) cv. serw 4 was the major goal of this study. Two experiments were conducted at the farm of Faculty of Agriculture, Suez Canal University, Ismailia, Egypt, during 2014 and 2015 seasons, to achieve this target. Each experiment included four levels of SA (0, 50, 100, 200 mg 1-1). The experimental results revealed that SA, at low concentration (50 mg 1-1), was an effective treatment for reduction the number of aphid populations and colony depth on the main inflorescence, contributed with reducing the thickness of secretory tissue of flower pedicel. The level of 50 mg 1-1 of SA-treated canola had the highest number of stomata cm-2, along with the lowest width of both stoma and its aperture. Thickness of xylem tissue and the number of xylem vessels bundle-1 in leaf midrib, reducing sugars and free amino acids was increased at 50 mg 1-1 SA, but free phenolics content did not affected significantly. Under controlled conditions, changes in temperature of infected leaves allowed the discrimination between healthy and infected areas in thermo-image, even before visible symptoms of aphid infestation appeared. The detection of modifications in plants or canopies, associated with low insect severity in the early stages of infestation, was crucial for the targeted, site-specific or on demand application of integrated aphid control. Canola, which was treated with 50 mg 1-1 of SA, gave 30.5 and 27.9 kg of oil ha-1 over the control. It was concluded that spraying of SA at 50 mg 1-1 was an effective elicitor to diminish the aphid numbers on canola inflorescence and improve its yield.


Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 434 ◽  
Author(s):  
Raj Pal Meena ◽  
Karnam Venkatesh ◽  
Rinki Khobra ◽  
S. C. Tripathi ◽  
Kailash Prajapat ◽  
...  

The rice–wheat cropping system being the backbone of food security in South-Asia has resulted in soil health deterioration, declining water table, and air pollution affecting livability index of the region. The effect of rice residue retention (RRR), irrigation levels and foliar application of K on wheat grain yield (GY), water use efficiency (WUE) and profitability was tested over three years. RRR increased wheat GY (5224 kg ha−1), above-ground biomass (AGBM = 11.9 t ha−1), tillers per square meter (TPM = 469) and grains per meter square (GrPMS = 13,917) significantly. Relative water content (RWC = 93.8) and WUE (2.45 k gm−3) were also increased significantly by RRR. Consequently, profitability (Net return = 624.4 $ and Benefit to cost (B:C) ratio) was enhanced. Foliar application of K enhanced GY (5151 kg ha−1), AGBM (12 t ha−1), RWC (94.1), SPAD (52.2), WUE (2.40 kg m−3), net returns (625.2 $) and BC ratio (1.62) significantly. RRR increased GY (15.66%) and WUE (17.39%) with additional revenue of 151 $ with only one irrigation at the CRI stage (ICS). RRR adopted over 10% of the area can earn 187 million-US$ annually. RRR if adopted over existing practice on a large area would reduce environmental degradation with an enhanced income to small and marginal farmers.


Sign in / Sign up

Export Citation Format

Share Document