scholarly journals Numerical Simulation of Laminar Flow and Heat Transfer of a Non-Newtonian Nanofluid in an Agitated Tank

2021 ◽  
Vol 39 (1) ◽  
pp. 251-261
Author(s):  
Abderrahim Mokhefi ◽  
Mohamed Bouanini ◽  
Mohammed Elmir

The purpose of research presented in this paper is to study the thermal and hydrodynamic effect of the non-isothermal laminar flow of a Al2O3-water nanofluid having shear thinning behavior in a mechanically stirred tank using the finite element method. Numerical simulation has been performed for a non-stationary two-dimensional flow controlled by certain influencing parameters such as the Reynolds number (1 ≤ Re ≤ 200), the behavior index (0.6 ≤ n ≤ 1) and the volume fraction of the alumina nanoparticles (0 ≤ φ ≤ 0.1). The simulation results obtained show that the addition of the Al2O3 nanoparticles in the base fluid leads to a significant enhancement in the heat transfer in the stirred tank compared to the base fluid. On the other hand, we note a slight decrease in the heat transfer with the decrease in the behavior index. It has also been noted, that the agitation power increases relatively with the volume fraction of the Alumina nanoparticles.

2019 ◽  
Vol 14 (3) ◽  
Author(s):  
Javad Aminian Dehkordi ◽  
Arezou Jafari

Abstract The present study applied computational fluid dynamics (CFD) to investigate the heat transfer of Newtonian (water) and non-Newtonian (0.3 %wt. aqueous solution of carboxymethylcellulose (CMC)) fluids in the presence of Al2O3 nanoparticles. To analyze the heat transfer rate, investigations were performed in a vertical helical coil as essential heat transfer equipment, at different inlet Reynolds numbers. To verify the accuracy of the simulation model, experimental data reported in the literature were employed. Comparisons showed the validity of simulation results. From the results, compared to the aqueous solution of CMC, water had a higher Nusselt number. In addition, it was observed that adding nanoparticles to a base fluid presented different results in which water/Al2O3 nanofluid with nanoparticles’ volume fraction of 5 % was more effective than the same base fluid with a volume fraction of 10 %. In lower ranges of Reynolds number, adding nanoparticles was more effective. For CMC solution (10 %), increasing concentration of nanoparticles caused an increase in the apparent viscosity. Consequently, the Nusselt number was reduced. The findings reveal the important role of fluid type and nanoparticle concentration in the design and development of heat transfer equipment.


Author(s):  
Najiyah Safwa Khashi'ie ◽  
Iskandar Waini ◽  
Ioan Pop ◽  
Nurul Amira Zainal ◽  
Abdul Rahman Mohd Kasim

This significant study is designed to analyze the axisymmetric hybrid nanofluid flow with heat transfer on a convectively heated stretching/shrinking disk. The combination of metal (Cu) and metal oxide (Al2O3) nanoparticles with water (H2O) as the base fluid is used for the analysis. Similarity transformation is adopted to reduce the complexity of the PDEs into a system of ODEs. The utilization of suction in maintaining the steady flow solution for the shrinking disk case discloses the presence of dual solutions. Besides, an upsurge of Biot number and suction’s strength enhances the heat transfer operation. The application of Cu-Al2O3/water nanofluid can extend the range of solutions’ existence and consequently, decelerate the separation of laminar flow.


Author(s):  
Pawan K. Singh ◽  
T. Sundararajan ◽  
Sarit K. Das

Present study tries to put light on hydrodynamics of nanofluids in microchannels. For the present hydrodynamic study, the microchannels of hydraulic diameters of 212 and 301 μm are used. Present study also uses nanofluids in microchannel. To observe the hydrodynamic effect of nanofluids in microchannel, the alumina nanoparticles with sizes 45 nm are chosen with the water as base fluid. The nanofluids with the dilute concentrations 0.25 vol% are used to observe the effect of volume fraction. From the study of base fluid flow in microchannel, it is found that the axial pressure drop is linear thus showing the incompressible behaviour of fluid. For all microchannels, early transition to turbulence was observed. Also for the same Re the pressure drop was higher for smaller channel. However, the usage of nanofluids in these microchannels shows different behavior from normal fluids. The axial pressure drop was again linear thus proving that even though these fluids are different from normal fluids; they follow the behaviour of incompressible Newtonian fluids. Surprisingly, the friction factor was similar for these fluids as compared to base fluids. This can be attributed to dilute concentration of nanofluids, which make them a homogeneous fluid. It suggests that the use of dilute nanofluids in microchannel results in no or little penalty in pressure drop. It also suggests that if nanofluids have to be used as a better coolant, the hydrodynamics and heat transfer characteristics has to be studied as higher concentrations.


2015 ◽  
Vol 93 (7) ◽  
pp. 725-733 ◽  
Author(s):  
M. Ghalambaz ◽  
E. Izadpanahi ◽  
A. Noghrehabadi ◽  
A. Chamkha

The boundary layer heat and mass transfer of nanofluids over an isothermal stretching sheet is analyzed using a drift-flux model. The relative slip velocity between the nanoparticles and the base fluid is taken into account. The nanoparticles’ volume fractions at the surface of the sheet are considered to be adjusted passively. The thermal conductivity and the dynamic viscosity of the nanofluid are considered as functions of the local volume fraction of the nanoparticles. A non-dimensional parameter, heat transfer enhancement ratio, is introduced, which shows the alteration of the thermal convective coefficient of the nanofluid compared to the base fluid. The governing partial differential equations are reduced into a set of nonlinear ordinary differential equations using appropriate similarity transformations and then solved numerically using the fourth-order Runge–Kutta and Newton–Raphson methods along with the shooting technique. The effects of six non-dimensional parameters, namely, the Prandtl number of the base fluid Prbf, Lewis number Le, Brownian motion parameter Nb, thermophoresis parameter Nt, variable thermal conductivity parameter Nc and the variable viscosity parameter Nv, on the velocity, temperature, and concentration profiles as well as the reduced Nusselt number and the enhancement ratio are investigated. Finally, case studies for Al2O3 and Cu nanoparticles dispersed in water are performed. It is found that increases in the ambient values of the nanoparticles volume fraction cause decreases in both the dimensionless shear stress f″(0) and the reduced Nusselt number Nur. Furthermore, an augmentation of the ambient value of the volume fraction of nanoparticles results in an increase the heat transfer enhancement ratio hnf/hbf. Therefore, using nanoparticles produces heat transfer enhancement from the sheet.


2014 ◽  
Vol 18 (suppl.1) ◽  
pp. 189-200 ◽  
Author(s):  
Primoz Ternik ◽  
Rebeka Rudolf

The present work deals with the natural convection in a square cavity filled with the water-based Au nanofluid. The cavity is heated on the vertical and cooled from the adjacent wall, while the other two horizontal walls are adiabatic. The governing differential equations have been solved by the standard finite volume method and the hydrodynamic and thermal fields were coupled together using the Boussinesq approximation. The main objective of this study is to investigate the influence of the nanoparticles? volume fraction on the heat transfer characteristics of Au nanofluids at the given base fluid?s (i.e. water) Rayleigh number. Accurate results are presented over a wide range of the base fluid Rayleigh number and the volume fraction of Au nanoparticles. It is shown that adding nanoparticles in a base fluid delays the onset of convection. Contrary to what is argued by many authors, we show by numerical simulations that the use of nanofluids can reduce the heat transfer rate instead of increasing it.


2013 ◽  
Vol 372 ◽  
pp. 143-148 ◽  
Author(s):  
Suhaib Umer Ilyas ◽  
Rajashekhar Pendyala ◽  
Narahari Marneni

Nanofluids are considered as promising heat transfer fluids due to enhanced heat transfer ability as compared to the base fluid alone. Knowledge of settling characteristics of nanofluids has great importance towards stability of nanosuspensions. Sedimentation behavior of Alumina nanoparticles due to gravity has been investigated using different proportions of ethanol-water binary mixtures. Nanoparticles of 40 nm and 50 nm are used in this investigation at 23°C. Sediment height with respect to time is measured by visualization method in batch sedimentation. The effect of sonication on the sedimentation behavior is also studied using ultrasonic agitator. The effect of particle diameter, nanoparticle concentration and ethanol-water proportion on sedimentation behavior of nanofluids has been investigated and discussed.


Author(s):  
Ajay Vallabh ◽  
P.S. Ghoshdastidar

Abstract This paper presents a steady-state heat transfer model for the natural convection of mixed Newtonian-Non-Newtonian (Alumina-Water) and pure Non-Newtonian (Alumina-0.5 wt% Carboxymethyl Cellulose (CMC)/Water) nanofluids in a square enclosure with adiabatic horizontal walls and isothermal vertical walls, the left wall being hot and the right wall cold. In the first case the nanofluid changes its Newtonian character to Non-Newtonian past 2.78% volume fraction of the nanoparticles. In the second case the base fluid itself is Non-Newtonian and the nanofluid behaves as a pure Non-Newtonian fluid. The power-law viscosity model has been adopted for the non-Newtonian nanofluids. A finite-difference based numerical study with the Stream function-Vorticity-Temperature formulation has been carried out. The homogeneous flow model has been used for modelling the nanofluids. The present results have been extensively validated with earlier works. In Case I the results indicate that Alumina-Water nanofluid shows 4% enhancement in heat transfer at 2.78% nanoparticle concentration. Following that there is a sharp decline in heat transfer with respect to that in base fluid for nanoparticle volume fractions equal to and greater than 3%. In Case II Alumina-CMC/Water nanofluid shows 17% deterioration in heat transfer with respect to that in base fluid at 1.5% nanoparticle concentration. An enhancement in heat transfer is observed for increase in hot wall temperature at a fixed volume fraction of nanoparticles, for both types of nanofluid.


Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1138 ◽  
Author(s):  
Ammar I. Alsabery ◽  
Mohammad Ghalambaz ◽  
Taher Armaghani ◽  
Ali Chamkha ◽  
Ishak Hashim ◽  
...  

The mixed convection two-phase flow and heat transfer of nanofluids were addressed within a wavy wall enclosure containing a solid rotating cylinder. The annulus area between the cylinder and the enclosure was filled with water-alumina nanofluid. Buongiorno’s model was applied to assess the local distribution of nanoparticles in the host fluid. The governing equations for the mass conservation of nanofluid, nanoparticles, and energy conservation in the nanofluid and the rotating cylinder were carried out and converted to a non-dimensional pattern. The finite element technique was utilized for solving the equations numerically. The influence of the undulations, Richardson number, the volume fraction of nanoparticles, rotation direction, and the size of the rotating cylinder were examined on the streamlines, heat transfer rate, and the distribution of nanoparticles. The Brownian motion and thermophoresis forces induced a notable distribution of nanoparticles in the enclosure. The best heat transfer rate was observed for 3% volume fraction of alumina nanoparticles. The optimum number of undulations for the best heat transfer rate depends on the rotation direction of the cylinder. In the case of counterclockwise rotation of the cylinder, a single undulation leads to the best heat transfer rate for nanoparticles volume fraction about 3%. The increase of undulations number traps more nanoparticles near the wavy surface.


2012 ◽  
Vol 16 (2) ◽  
pp. 469-480 ◽  
Author(s):  
Hosseinali Soltanipour ◽  
Parisa Choupani ◽  
Iraj Mirzaee

This paper presents a numerical investigation of heat transfer augmentation using internal longitudinal ribs and ?-Al2O3/ water nanofluid in a stationary curved square duct. The flow is assumed 3D, steady, laminar, and incompressible with constant properties. Computations have been done by solving Navier-Stokes and energy equations utilizing finite volume method. Water has been selected as the base fluid and thermo- physical properties of ?- Al2o3/ water nanofluid have been calculated using available correlations in the literature. The effects of Dean number, rib size and particle volume fraction on the heat transfer coefficient and pressure drop have been examined. Results show that nanoparticles can increase the heat transfer coefficient considerably. For any fixed Dean number, relative heat transfer rate (The ratio of the heat transfer coefficient in case the of ?- Al2o3/ water nanofluid to the base fluid) increases as the particle volume fraction increases; however, the addition of nanoparticle to the base fluid is more useful for low Dean numbers. In the case of water flow, results indicate that the ratio of heat transfer rate of ribbed duct to smooth duct is nearly independent of Dean number. Noticeable heat transfer enhancement, compared to water flow in smooth duct, can be achieved when ?-Al2O3/ water nanofluid is used as the working fluid in ribbed duct.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Koji Takahashi ◽  
Yoshiharu Sugo ◽  
Yasuyuki Takahata ◽  
Hitoshi Sekine ◽  
Masayuki Nakamura

The mixing performance in a vessel agitated by an impeller that inclined itself, which is considered one of the typical ways to promote mixing performance by the spatial chaotic mixing, has been investigated experimentally and numerically. The mixing time was measured by the decolorization method and it was found that the inclined impeller could reduce mixing time compared to that obtained by the vertically located impeller in laminar flow region. The effect of eccentric position of inclined impeller on mixing time was also studied and a significant reduction of mixing time was observed. To confirm the experimental results, the velocity profiles were calculated numerically and two novel numerical simulation methods were proposed.


Sign in / Sign up

Export Citation Format

Share Document