scholarly journals Effect of Electrodeposition Parameters on the Composition and Surface Topography of Nanostructured Coatings by Tungsten with Iron and Cobalt

2020 ◽  
Vol 22 (1) ◽  
pp. 19
Author(s):  
G. Yar-Mukhamedova ◽  
M. Ved’ ◽  
I. Yermolenko ◽  
N. Sakhnenko ◽  
A. Karakurkchi ◽  
...  

The electrodeposition of binary and ternary coatings Fe-W and Fe-Co-W from mono ligand citrate electrolyte has been investigated. The Fe-Co-W coatings were formed from electrolytes, which composition differs in the ratio of the concentrations of the alloying components and the ligand content. The investigation results indicate a competitive reduction of iron, cobalt and tungsten, the nature of which depends both on the ratio of electrolyte components, and electrolysis parameters. The effect of both current density amplitude and pulse on off time on quality, composition and surface morphology of the galvanic alloys was determined. Coatings deposited on a direct current with a density of more than 6.5 A/dm2, crack and peel off from the substrate due to the inclusion of Fe (III) compounds containing hydroxide anions. The use of non-stationary electrolysis allows us to extend the working range of current density to 8.0 A/dm2 and form electrolytic coatings of sufficient quality with significant current efficiency and the content of the refractory component. The presence of the Co7W6, Fe7W6, α-Fe, and Fe3C phases detected in the Fe-Co-W deposits reflects the competition between the alloying metals reducing from hetero-nuclear complexes. The surface of binary and ternary coatings is characterized by the presence of spherical agglomerates and is more developed in comparison with steel substrate. The parameters Ra and Rq for electrolytic alloy Fe-W are of 0.1, for Fe-Co-W are 0.3, which exceeds the performance of a polished steel substrate (Ra = 0.007 and Rq = 0.010). These properties prospect such alloys as a multifunctional layer are associated with structural features, surface morphology, and phase composition.

2018 ◽  
Vol 20 (2) ◽  
pp. 145 ◽  
Author(s):  
M. Ved’ ◽  
N. Sakhnenko ◽  
I. Yermolenko ◽  
G. Yar-Mukhamedova ◽  
R. Atchibayev

Principles of three component Iron-Cobalt-Tungsten alloys electrodeposition from complex Fe (III) based citrate electrolytes are discussed. It is shown, that deposition of ternary alloys proceeds through competitive reduction of cobalt and tungsten with iron. With increasing ligand concentration coatings are enriched with a refractory component; however, increasing current density favors a reverse trend. The effect of both current density and pulse on/off time on the quality, content of alloying metals and surface topography of electrolytic coatings were determined. The application of pulsed electrolysis provides increasing tungsten content up to 13 at.%, at current efficiency of 70–75%. Globular relief of Fe-Co-W coatings is caused by refractory metals incorporation, and crystalline and amorphous parts of structure are visualized by X-ray spectroscopy, including inter-metallic phases Co7W6, Fe7W6 along with α-Fe and Fe3C. The crystallite size of the amorphous part is near 7–8 nm. Corrosion resistance of the coatings is 1.3–2.0 orders of magnitude higher than the substrate parameters as follows from data of polarization resistance method and electrode impedance spectroscopy.


2018 ◽  
Vol 764 ◽  
pp. 164-173 ◽  
Author(s):  
Hui Fan ◽  
Man Liu ◽  
Yang Pei Zhao ◽  
Shan Kui Wang

Jet electrodeposition process is a very promising method in fabricating metal matrix composites reinforced with ceramic particles. In use of this method, insoluble particles suspended in an electrolytic bath are impinged onto and embedded in a growing metal layer. This paper is focused on the investigations of the copper matrix nanocomposite coatings with hard Al2O3 nanoparticles, electrochemically deposited from jet-circulated baths on 304 stainless steel substrate. The Cu-Al2O3 composite coating was characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The effects of electrolyte jet velocity, current density, addition amount of Al2O3 in the electrolyte were analyzed on the microstructure change, surface morphology change as well as codeposited content of Al2O3 particles in the composite coating. It was found that increasing content of Al2O3 particles in electrolyte may improve composite coating surface morphology and increase the practical current density by exerting impingement effect on the cathode deposit surface, till excessive Al2O3 e.g.20g/L particles was added. Besides, appropriate amount of nanoparticles in the electrolyte also could offer grain refinement by providing nanocrystalline sized between 30~60 nm with current density in the range of 100~500 A/dm2.


2014 ◽  
Vol 290 ◽  
pp. 373-380 ◽  
Author(s):  
Ashutosh Sharma ◽  
Sumit Bhattacharya ◽  
Siddhartha Das ◽  
Karabi Das

2012 ◽  
Vol 184-185 ◽  
pp. 1167-1170
Author(s):  
Guang Yu Du ◽  
Zhen Tan ◽  
Kun Liu ◽  
Hao Chai ◽  
De Chun Ba

In this paper TiN coating was prepared on stainless steel substrate using arc ion plating technique. The coating samples’ phases, surface morphology, micro-determination chemical composition, loss factor and damping ratio were tested. The phases of TiN coating were determined by X-ray diffraction (XRD) technique. The surface morphology and chemical composition of the TiN coating were analyzed by scanning electron microscope (SEM) and Energy Dispersive Spectrometer (EDS), respectively. The damping performance of the samples was measured by hammering activation according half power bandwidth method. The loss factor or damping ratio of samples were obtained according frequency response curve. The results showed that damping performance of samples was considerably improved by TiN coatings.


2010 ◽  
Vol 150-151 ◽  
pp. 1546-1550 ◽  
Author(s):  
Xiang Zhu He ◽  
Xiao Wei Zhang ◽  
Xin Li Zhou ◽  
Zhi Hong Fu

This paper presented the composite coatings of nickel with graphite particle on the aluminum substrate using a nickel sulfamate bath. Effects of graphite particle concentration on the surface morphologies of the composite coatings were investigated. The inclusion of graphite particle into metal deposits was dependent on many process parameters, including particle concentration, current density, pH and temperature. Results of SEM and XRD demonstrated that graphite particle had successfully deposited on that nickel matrix; besides, the surface morphology of coatings obtained from sulfamate bath containing 2g/L graphite particle dispersed more uniformly than the ones with higher concentration.


2004 ◽  
Vol 11 (04n05) ◽  
pp. 433-442 ◽  
Author(s):  
C. Y. DAI ◽  
Y. PAN ◽  
S. JIANG ◽  
Y. C. ZHOU

The nanocrystalline nickel coating was synthesized by pulse-jet electrodeposition from modified Watts bath. Pulse and jet plating was employed to increase the deposition current density, decrease diffusion layer, increase the nucleation rate and in this case the prepared method would result in fine-grained deposits. Transmission and scanning electron microscopy and X-ray diffraction (XRD) were used to study the microstructure, the surface morphology, the crystal preferred orientation and the variety of the lattice parameter respectively. The influence of pulse parameters, namely peak current density, the duty cycle and pulse frequency on the grain size, surface morphology, crystal orientation and microstructure was studied. The results showed that with increasing peak current density, the deposit grain size was found to decrease markedly in other parameters at constant. However, in our experiment it was found that the grain size increased slightly with increasing pulse frequency. For higher peak current density, the surface morphology was smoother. The crystal orientation progressively changed from an almost random distribution to a strong (111) texture. This means that the peak current density was the dominated parameter to effect the microstructure of electrodeposited nanocrystalline nickel coating. In addition, the lattice parameter for the deposited nickel is calculated from XRD and it is found that the calculated value is less than the lattice parameter for the perfect nickel single crystal. This phenomenon is explained by the crystal lattice mismatch.


2009 ◽  
Vol 79-82 ◽  
pp. 1743-1746
Author(s):  
Atsushi Chiba

Zn plated on Cu plate from 0.65 mol/dm3 alkali zincate solution in 8 mol/dm3 KOH bath Electrolysis was carried out as current density of 10 - 100 mA/cm2. The sonication was prepared 40 kHz. The current efficiency was 76.1 % at 10 mA/cm2 in 0.10 mol/dm3 zincate and 100 % in 0.15 mol/dm3 zincate at 50 mA/cm2. The current efficiency and thickness of diffusion layer affected with the agitation of micro-jet. Surface of film was smooth and dense as particle crushed down with the shockwave pressure. (112) plane moved horizontally to <113> direction under the compressive stress or shearing stress.


2012 ◽  
Vol 557-559 ◽  
pp. 1971-1974
Author(s):  
Cheng Xi Wang ◽  
Ji Hua Peng ◽  
Xian Wen Liang ◽  
Jun Tian

The Cr1-xAlxN coatings were deposited onto M2 tool steel using ion arc plating technique. The effect of current density on the surface morphology and mechanical properties of TiN/CrAlN coating was made. It was found that adjusting the pure metal target currents is not only to change the metal atomic ratio, but also to influence the surface morphology, their hardness and adhesion. The micro hardness Hv increases almost linearly with Al content of the coating in this study, and the Cr0.41Al0.59N coating reaches Hv 2950. The adhesion force between the coating and the substrate reaches maximum value 55N, when the [Al]/[Al+Cr] ratio is 0.44.


NANO ◽  
2019 ◽  
Vol 14 (03) ◽  
pp. 1950030 ◽  
Author(s):  
Man Zhang ◽  
Yanwei Sui ◽  
Xiaofang Yuan ◽  
Jiqiu Qi ◽  
Fuxiang Wei ◽  
...  

A nanoflower structure of Zn[Formula: see text]Co[Formula: see text]S directly grown on carbon fiber papers (CFP) was successfully designed by a mild two-step hydrothermal method. Benefiting from their fascinating structural features, Zn[Formula: see text]Co[Formula: see text]S/CFP electrode exhibits a maximum specific capacitance of 300[Formula: see text]F[Formula: see text]g[Formula: see text] at current density of 1[Formula: see text]A[Formula: see text]g[Formula: see text] and 84% capacitance retention after 5,000 cycles at current density of 5[Formula: see text]A[Formula: see text]g[Formula: see text]. Subsequently, Zn[Formula: see text]Co[Formula: see text]S/CFP//AC all-solid-state asymmetric supercapacitor (ASC) device is assembled and able to illuminate the red LEDs. ASC devices deliver a maximum energy density of 9.59[Formula: see text]W[Formula: see text]h[Formula: see text]kg[Formula: see text] at a power density of 750[Formula: see text]W[Formula: see text]kg[Formula: see text]. Therefore, this impressive result demonstrates that the nanoflower Zn[Formula: see text]Co[Formula: see text]S have promising applications in the development of high-performance supercapacitors.


2020 ◽  
Vol 34 (27) ◽  
pp. 2050243
Author(s):  
Hui Fan ◽  
Jie Jiang ◽  
Yangpei Zhao ◽  
Shankui Wang ◽  
Zhijing Li

Ni–Al2O3 composite coatings were prepared with a modified Watt’s bath by using jet electrodeposition method. As the key process parameter, current density and the addition of Al2O3 nanoparticles in electrolyte were studied about the effect on the surface morphology and co-deposition of Al2O3 nanoparticles of composite coating. The mechanical and tribological properties of the composite coating were also tested. The results show that properly increasing the current density and Al2O3 addition can increase the co-deposition of nanoparticles in the coating and promote the formation of a dense and refined coating structure. Using the optimized process parameters of current density (300 A/dm2) and Al2O3 addition (30 g/L), the co-deposition of Al2O3 in the composite coating can reach a maximum of 13.1 at.%. The hardness of the coating reaches the peak at 623 HV. The wear rate of the composite coating is also greatly reduced with optimized parameters.


Sign in / Sign up

Export Citation Format

Share Document