scholarly journals Methylene Blue and Iron (II) Adsorption onto Raphia Hookeri Seed: A Comparative Equilibrium Isotherm Study

Author(s):  
P. F Tarbuka ◽  
R. H Gumus

In this study, activated carbon prepared from Raphia hookeri seed was employed as an adsorbent to take up methylene blue (an organic ion-in-solution) and iron (II), a metal ion-in-solution. The biosorbent was prepared using chemical activation using sodium hydroxide (NaOH) as an impregnating agent. Calibration was performed with a focus on the change in the adsorbate concentration. The equilibrium isotherms study was conducted by considering a range of sorbate concentrations, to determine the optimal conditions for the adsorption systems. The same sorbate volume (10 ml), and the same dosage (0.3g) of biosorbent were used for both adsorption processes. Linear analysis was used to compare the best-fitting isotherms. Langmuir, Freundlich, and Dubinin-Radushkevich models were tested. The highest coefficient of determination values (R2) for both iron (II) and Methylene blue was obtained from the Langmuir isotherm as 0.9266 and 0.9572, respectively, compared to values from the other isotherms tested – indicative of Langmuir isotherm’s superior fit. Estimated values of ‘separation factor’, KR, for Methylene blue (0.29457), however, was lower than that of iron (II) (0.42141) - an indication that the sorbent treats methylene blue better than iron (II), though both processes are feasible.

Author(s):  
A. A. Nuhu ◽  
I. C. P. Omali ◽  
C. O. Clifford

Activated carbon was prepared from Caesalpinia pulcherrima husk (CPH) by chemical activation method using phosphoric acid as an activating agent.  The activated sample was characterized based on the physical properties.  The experimental data were fitted to Langmuir, Freundlich and Temkin models. The coefficient of determination for Langmuir model R2 = 0.967 was higher compared to Freundlich and Temkin showing monolayer adsorption, and also established that the adsorption of methylene onto CPH based activated carbon can be best described by the Langmuir isotherm model. The energy of adsorption (806.2 kJ/mol) obtained from this model shows clearly that the process is chemisorption. It was observed that the adsorption characteristic indicates a rapid uptake of the adsorbate; the optimum contact time for the adsorption of Methylene blue onto the prepared carbon was 60 minutes. This evidence also points to chemisorption process. These results demonstrate that the carbon derived from CPH can be used as an efficient adsorbent for the adsorption of Methylene blue.


2021 ◽  
Vol 8 (3) ◽  
pp. 202-209
Author(s):  
Ade Priyanto ◽  
Malik F ◽  
Muhdarina Muhdarina ◽  
Awaluddin A

Sugarcane Bagasse can be used as an adsorbent both under natural conditions and modified by chemical activation using sodium hydroxide (NaOH). Activation of sugarcane bagasse with NaOH was carried out at variations of 5:1, 10:1, and 20:1 (w/w). The absorption ability of bagasse adsorbent to methylene blue solution was carried out with the parameters of variation of contact time (60, 90, 120, 150, and 180 minutes), adsorbate concentration (20, 30, 40, 50, and 60 ppm) and temperature (30, 40, 50, and 60 oC). The adsorbent's characterization included determining the functional groups using FTIR, morphology, and mass of elements using SEM-EDX, and determining the surface area and volume of adsorbent pores using the BET methods. The highest adsorption percentage results were found in the NASB10:1 adsorbent at 99.50%. The optimum conditions for the NASB10:1 adsorbent are with a contact time of 120 minutes, an adsorbate concentration of 50 ppm, and a temperature of 30 oC or 303 K. The NASB10:1 adsorbent has the highest surface area compared to other adsorbents, namely 2.803 m2/g so that it can perform the maximum absorption of methylene blue.


2019 ◽  
Author(s):  
Chem Int

The new adsorbents were prepared from Moroccan oil shale by chemical and physical process .In this study, experimental Plackett-Burman has been used as a screening method to study six factors for the development of materials to adsorbent basis of oil shale Moroccan. The factors have been identified by two levels, To Know temperature (°C), Processing time (min), mass ratio (m precursor/m acid), Pretreatment mixture the precursor with acid, origin of the raw material and type of the activating agent (H2SO4, H3PO4).And it was chosen as a response The maximum quantity of adsorption of the molecule of Methylene blue (Qads in mg/g) and the specific surface measure by the method bet (Sbet in m2/g), The predicted values were in agreement with the experimental values with a coefficient of determination (R2) of 0.98. The model has been validated by experiments subsequent to optimized conditions. The experimental data processing by software JMP 7 showed that the processing temperature The report of oil shale on the acid and activation time were the important effect on the maximal capacity of adsorption of methylene blue. The sample prepared at 237 °C during 215 min with pre-processing has a maximal capacity of adsorption equal to 54mg/g according to model of adsorption of Langmuir and SBET equal to 143 m2/g.


2020 ◽  
Vol 5 (3) ◽  
pp. 221
Author(s):  
Muhammad Azam ◽  
Muhammad Anas ◽  
Erniwati Erniwati

This study aims to determine the effect of variation of activation temperature of activated carbon from sugar palm bunches of chemically activatied with the activation agent of potassium silicate (K2SiO3) on the adsorption capacity of iodine and methylene blue. Activated carbon from bunches of sugar palmacquired in four steps: preparationsteps, carbonizationstepsusing the pyrolysis reactor with temperature of 300 oC - 400 oC for 8 hours and chemical activation using of potassium silicate (K2SiO3) activator in weight ratio of 2: 1 and physical activation using the electric furnace for 30 minutes with temperature variation of600 oC, 650 oC, 700 oC, 750 oC and 800 oC. The iodine and methyleneblue adsorption testedby Titrimetric method and Spectrophotometry methodrespectively. The results of the adsorption of iodine and methylene blue activated carbon from sugar palm bunches increased from 240.55 mg/g and 63.14 mg/g at a temperature of 600 oC to achieve the highest adsorption capacity of 325.80 mg/g and 73.59 mg/g at temperature of 700 oC and decreased by 257.54 mg/g and 52.03 mg/g at a temperature of 800 oCrespectively.However, it does not meet to Indonesia standard (Standard Nasional Indonesia/SNI), which is 750 mg/g and 120 mg/g respectively.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1917
Author(s):  
Guangpu Zhang ◽  
Rong Wo ◽  
Zhe Sun ◽  
Gazi Hao ◽  
Guigao Liu ◽  
...  

A magnetic metal−organic frameworks adsorbent (Fe3O4@MIL-53(Al)) was prepared by a typical solvothermal method for the removal of bisphenol A (BPA), tetracycline (TC), congo red (CR), and methylene blue (MB). The prepared Fe3O4@MIL-53(Al) composite adsorbent was well characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), and fourier transform infrared spectrometer (FTIR). The influence of adsorbent quantity, adsorption time, pH and ionic strength on the adsorption of the mentioned pollutants were also studied by a UV/Vis spectrophotometer. The adsorption capacities were found to be 160.9 mg/g for BPA, 47.8 mg/g for TC, 234.4 mg/g for CR, 70.8 mg/g for MB, respectively, which is superior to the other reported adsorbents. The adsorption of BPA, TC, and CR were well-fitted by the Langmuir adsorption isotherm model, while MB followed the Freundlich model, while the adsorption kinetics data of all pollutants followed the pseudo-second-order kinetic models. The thermodynamic values, including the enthalpy change (ΔH°), the Gibbs free energy change (ΔG°), and entropy change (ΔS°), showed that the adsorption processes were spontaneous and exothermic entropy-reduction process for BPA, but spontaneous and endothermic entropy-increasing processes for the others. The Fe3O4@MIL-53(Al) was also found to be easily separated after external magnetic field, can be a potential candidate for future water treatment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sivarama Krishna Lakkaboyana ◽  
Khantong Soontarapa ◽  
Nabel Kalel Asmel ◽  
Vinay Kumar ◽  
Ravi Kumar Marella ◽  
...  

AbstractThe present study focused on the synthesis of copper hydroxide nanowires decorated on activated carbon (Cu(OH)2-NWs-PVA-AC). The obtained Cu(OH)2-NWs-PVA-AC Nano-composite was distinguished by XRD, SEM, EDX, BET, FTIR and XPS respectively. Besides, different variables such as solution pH, and initial dye concentration, contact time, and temperature were performed on the adsorption efficiency of MB in a small batch reactor. Further, the experimental results are analyzed by various kinetic models via PFO, PSO, intra-particle diffusion and Elovich models, and the results revealed that among the kinetic models, PSO shows more suitability. In addition, different adsorption isotherms were applied to the obtained experimental data and found that Langmuir–Freundlich and Langmuir isotherm were best fits with the maximum adsorption capacity of 139.9 and 107.6 mg/g, respectively. The Nano-composite has outstanding MB removal efficiency of 94–98.5% with a span of 10 min. and decent adsorption of about 98.5% at a pH of 10. Thermodynamic constants like Gibbs free energy, entropy, and enthalpy were analyzed from the temperature reliance. The results reveal the adsorption processes are spontaneous and exothermic in nature. The high negative value of ΔG° (− 44.11 to − 48.86 kJ/mol) and a low negative value of ΔH° (− 28.96 kJ/mol) show the feasibility and exothermic nature of the adsorption process. The synthesized dye was found to be an efficient adsorbent for the potential removal of cationic dye (methylene blue) from wastewater within a short time.


2012 ◽  
Vol 550-553 ◽  
pp. 2259-2262
Author(s):  
Song Bo Cui ◽  
Hua Yong Zhang ◽  
Lu Yi Zhang

The adsorption behavior of methylene blue (MB) dye from aqueous solutions onto honeycomb-cinder (HC) and its acid-activated product was investigated in a batch system. The results showed the adsorption capacity was decreased for raw HC samples with the increase of pH value, while it was increased for activated samples. The adsorption data were fit with Langmuir isotherm model for MB adsorption by all samples. The MB adsorption capacity on samples was increased from 2.62 mg/g to 7.81 mg/g and 7.00 mg/g after acid-activated by HCl and H2SO4, respectively. The adsorption processes of MB followed pseudo-second-order kinetics with a coefficient of correlation≥0.99. This study demonstrated that acid-activated HC has superior adsorbing ability for MB than raw HC and can be used as alternative adsorbents in dye wastewater treatment.


2017 ◽  
Vol 19 (36) ◽  
pp. 25105-25114 ◽  
Author(s):  
Akira Oda ◽  
Takahiro Ohkubo ◽  
Takashi Yumura ◽  
Hisayoshi Kobayashi ◽  
Yasushige Kuroda

Understanding the exact position and the detailed role of the Al array in zeolites is essential for elucidating the origin of unique properties and for designing zeolite materials with high efficiency in catalytic and adsorption processes. In this work, we advanced pivotal roles of Lewis base–metal ion bifunctionality caused by Al atoms arrayed circumferentially in the MFI-zeolite pores.


Author(s):  
Rusmidah Ali ◽  
Boon Siew Ooi

Dalam kajian ini, ZnO dan TiO2 digunakan sebagai fotomangkin dalam pendegradasian pewarna New Methylene Blue N (NMBN). Kadar fotodegradasi diukur menggunakan alat spektrofotometer UV-Vis. Dalam kajian ini, New Methylene Blue N menunjukkan nilai serapan pada λ = 590 nm dan λ = 286 nm. Lampu UV (λ = 354 nm) digunakan dalam proses fotodegradasi. Dalam proses degradasi menggunakan ZnO menunjukkan 81.42% NMBN terdegradasi pada λ = 590 nm dan 77.75% pada λ = 286 nm. Sebaliknya, degradasi menggunakan TiO2 adalah 25.68% pada λ = 590 nm dan 26.37% pada λ = 286 nm. Peratus degradasi New Methylene Blue N ialah 88.89% dan 68.94% pada masing-masing λ = 590 nm dan λ = 286 nm apabila ditambahkan dengan H2O2. Campuran ZnO dan TiO2 dalam nisbah 85: 15 (0.085 g; 0.015 g) merupakan campuran fotomangkin yang paling optimum iaitu dengan peratus degradasi NMBN sebanyak 96.97% dan 93.61% pada λ = 590 nm dan λ = 286 nm. Penambahan ion logam Cu2+ memberikan peratus degradasi tertinggi berbanding ion logam lain iaitu 83.83% pada λ = 590 nm. Penambahan ion logam Pb2+ memberikan peratus degradasi tertinggi pada λ = 286 nm iaitu 81.25% pewarna terdegradasi. Keadaan optimum dicapai pada pH 5.90, dengan peratus degradasi tertinggi iaitu 92.84% dan 89.30% pada masing-masing λ = 590 nm dan λ = 286 nm. Kata kunci: New Methylene Blue N; fotodegradasi; larutan; ZnO; TiO2 In this study, ZnO and TiO2 are used as photocatalyst to degrade the dye, New Methylene Blue N (NMBN). The photodegradation rate was measured using UV-Visible spectrophotometer. In this study, New Methylene Blue N showed absorption values at λ = 590 nm and λ = 286 nm. UV lamp (λ = 354 nm) is used in the photodegradation process. Results showed that ZnO is a better photocatalyst compared to TiO2. The degradation by ZnO showed that 81% of NMBN was degraded at λ = 590 nm and 77.75% at λ = 286 nm. In contratst, the degradation using TiO2 was 25.68% at λ = 590 nm and 26.37% at λ = 286 nm. The percent degradation of New Methylene Blue N is 88.89% and 68.94% at λ = 590 nm and λ = 286 nm respectively when H2O2 was added. A mixture of ZnO and TiO2 in the ratio of 85: 15 (0.085 g: 0.015 g) is the most optimum ratio for the mixed photocatalyst where the degradation percentage of NMBN are 96.97% and 93.61% at λ = 590 nm and λ = 286 nm. The addition of Cu2+ metal ion gave the highest percentage of degradation (83.83% at λ = 590 nm) compared to other metal ions. The addition of Pb2+ gave the highest percentage of degradation at λ = 286 nm with 81.25% degradation of the dye. The optimum condition was achieved at pH 5.90, which gave the highest percentage degradation, 92.84% and 89.30% at λ = 590 nm and λ = 286 nm respectively. Key words: New Methylene Blue N; photodegradation; aqueous; ZnO; TiO2


Sign in / Sign up

Export Citation Format

Share Document