scholarly journals Antibacterial activity of endosymbiotic bacterial compound from Pheretima sp. earthworms inhibit the growth of Salmonella Typhi and Staphylococcus aureus: in vitro and in silico approach

Author(s):  
Dirayah Rauf Husain ◽  
Riuh Wardhani

Background and Objectives: Earthworms coexist with various pathogenic microorganisms; thus, their immunity mecha- nisms have developed through a long process of adaptation, including through endogenous bacterial symbionts. This study aims to identify earthworm endosymbiont bacteria compounds and their antibacterial activity through an in vitro approach supported by an in silico approach. Materials and Methods: This research was conducted using the in vitro inhibition test through agar diffusion and the in silico test using molecular docking applications, namely, PyRx and Way2Drugs Prediction of Activity Spectra for Substances (PASS). Results: The in vitro results showed a potent inhibition activity with a clear zone diameter of 21.75 and 15.5 mm for Staph- ylococcus aureus and Salmonella Typhi, respectively. These results are supported by chromatography and in silico tests, which showed that several compounds in endosymbiotic bacteria, cyclo (phenylalanyl-prolyl) and sedanolide, have high binding affinity values with several antibiotic-related target proteins in both pathogenic bacteria. Cyclo (phenylalanyl-prolyl) has the highest binding affinity of -6.0 to dihydropteroate synthase, -8.2 to topoisomerase, and -8.2 to the outer membrane, whereas sedanolide has the highest binding affinity to DNA gyrase with approximately -7.3. This antibiotic activity was also clarified through the Way2Drugs PASS application. Conclusion: Ten active compounds of endosymbiont bacteria, Cyclo (phenylalanyl-prolyl) and sedanolide were potential candidates for antibacterial compounds based on the inhibition test of the agar diffusion method and the results of reverse docking and Way2Drugs PASS.

2011 ◽  
Vol 6 (2) ◽  
pp. 173 ◽  
Author(s):  
Rosmiati Rosmiati ◽  
Habsah Mohamad ◽  
Tengku Sifzizul Tengku Muhammad ◽  
Najiah Musa ◽  
Aziz Ahmad ◽  
...  

Vibriosis is one of diseases which often results in mass mortality of Penaeus monodon larval rearing systems. It attacks shrimp of all stages in zoea, mysis and shrimp postlarva stage. This disease is caused by Vibrio spp, particularly Vibrio harveyi (a luminescent bacterium). Several kinds of antibiotics and chemical material have been used to overcome the disease but they have side effects to environment and human. The searching of bioactive compounds as an alternative treatment has been done for multi purposes. In this study diethyl eter, butanol and aqueous extract of Indonesian sponges Aaptos aaptos and Callyspongia pseudoreticulata were tested for in vitro activity against Vibrio spp. and Vibrio harveyi by using disc diffusion method. The result showed that all extracts of Aaptos aaptos gave a positive antibacterial activity towards those pathogenic bacteria. Meanwhile, only butanol extract of Callyspongia pseudoreticulata obtained to exhibit an antibacterial activity on those pathogenic bacteria. The strong anti-vibrio activity were shown by butanol and aqueous extract of Aaptos aaptos with the minimum inhibitory concentration (MIC) value of 0.313 and 0.625 mg/mL, respectively. Whilst, the butanol extract of Callyspongia pseudoreticulata indicated a low antibacterial activity with the MIC value of 10 mg/mL. Toxicity of those active extracts was evaluated by Brine Shrimp Lethality Test (BST). Interestingly, butanol and aqueous extracts of Aaptos aaptos did not show any toxic effect in Artemia salina larvae up to 8 x MIC (2.504 mg/mL and 5.000 mg/mL). It is the first report for the anti-vibr io activity of both Aaptos aaptos and Callyspongia pseudoreticulata. This results suggest that Aaptos aaptos has a potential to be used as a source of alternative compound to vibriosis prevention for mariculture.


Author(s):  
Aldina Amalia Nur Shadrina ◽  
Yetty Herdiyati ◽  
Ika Wiani ◽  
Mieke Hemiawati Satari ◽  
Dikdik Kurnia

Background: Streptococcus sanguinis can contribute to tooth demineralization, which can lead to dental caries. Antibiotics used indefinitely to treat dental caries can lead to bacterial resistance. Discovering new antibacterial agents from natural products like Ocimum basilicum will help combat antibiotic resistance. In silico analysis (molecular docking) can help determine the lead compound by studying the molecular interaction between the drug and the target receptor (MurA enzyme and DNA gyrase). It is a potential candidate for antibacterial drug development. Objective: The research objective is to isolate the secondary metabolite of O. basilicum extract that has activity against S. sanguinis through in vitro and in silico analysis. Methods: n-Hexane extract of O. basilicum was purified by combining column chromatography with bioactivity-guided. The in vitro antibacterial activity against S. sanguinis was determined using the disc diffusion and microdilution method, while molecular docking simulation of nevadensin (1) with MurA enzyme and DNA gyrase was performed used PyRx 0.8 program. Results: Nevadensin from O. basilicum was successfully isolated and characterized by spectroscopic methods. This compound showed antibacterial activity against S. sanguinis with MIC and MBC values of 3750 and 15000 μg/mL, respectively. In silico analysis showed that the binding affinity to MurA was -8.5 Kcal/mol, and the binding affinity to DNA gyrase was -6.7 Kcal/mol. The binding of nevadensin-MurA is greater than fosfomycin-MurA. Otherwise, Nevadensin-DNA gyrase has a weaker binding affinity than fluoroquinolone-DNA gyrase and chlorhexidine-DNA gyrase. Conclusion: Nevadensin showed potential as a new natural antibacterial agent by inhibiting the MurA enzyme rather than DNA gyrase.


1970 ◽  
Vol 10 (3) ◽  
pp. 148-151
Author(s):  
M Ahmad ◽  
M Rahman ◽  
P Kumar Paul

Aims & Methods: The present study was undertaken to compare the antibacterial activity of a cephradine derivative with that of the parent antibiotic cephradine. Cephradine was converted to its benzoyl derivative by Schotten-Baumann method for the first time. Disc diffusion method was employed to find out the antibacterial activity against EPEC, ETEC, E. Agg, Salmonella typhi, Salmonella group B, Shigella boydii, Shigella dysenteriae 1, Shigella dysenteriae 2, Shigella flexinariae and Shigella sonnei. Melting point, TLC, HPLC, UV, FTIR and <sup>1</sup>H NMR studies were carried out to check the purity and confirm that the derivative was cephradine benzoate. Results: The benzoyl derivative showed promising activity against tested bacteria. The results obtained from the study demonstrate that the benzoyl derivative could be a potential antibacterial agent. Key words: Cephradine benzoate, antibacterial activity, disc diffusion method.   DOI: http://dx.doi.org/ 10.3329/bjms.v10i3.8356 BJMS 2011; 10(3): 148-151


Author(s):  
Sangeetha B ◽  
Indra V ◽  
Abdul Rahim M ◽  
Venkadachalam E

Chitosan, a polysaccharide derivative of chitin forms the structural components in the exoskeletons of crustacean animals and is also found in the cell walls of fungi. Chitosan is produced primarily from the crab shell waste through chemical means. The chemical structure of chitosan has been identified and characterized by FT-IR and XRD. In the current study, the antimicrobial activity of chemically deacetylated chitosan extracts of mud crabs (Scylla serrata) was evaluated against five human pathogenic isolates viz. Staphylococcus aureus, Salmonella typhi, Klebsiella pneumonia, Bacillus cereus and Pseudomonas aeruginosa using agar disc diffusion method. These were performed to determine the crystallinity and functional properties of chitosan. The results showed that the antibacterial effect increased with increasing chitosan concentration. This study showed that chitosan isolated from crab shell has potential antibacterial activity therefore it can be utilized in the food and pharmaceutical industries, and that antibacterial activity may be due to functional groups present in the crab shell.


2021 ◽  
Vol 9 (2) ◽  
pp. 75
Author(s):  
Luthfiah Luthfiah ◽  
Dwi Setyati ◽  
Sattya Arimurti

Dumortiera hirsuta is one of the liverworts that can be used as a medicinal to prevent infection by pathogenic bacteria. The content of secondary metabolites of D. hirsuta has potential as antibacterial properties includes flavonoids, alkaloids and steroids. This research is to analyze the antibacterial activity of moss D. hirsuta against pathogenic bacteria that will be beneficial to humans. Liverworts of D. hirsuta were extracted using ethyl acetate solvent and tested against three types of pathogenic bacteria using the agar well-diffusion method. The results of this study indicated that the ethyl acetate extract of D. hirsuta at 100% concentration could inhibit the growth of Escherichia coli, Staphylococcus aureus, and Salmonella typhi bacteria. The range of antibacterial activity categories of the ethyl acetate extract of D. hirsuta to E. coli, S. aureus, and S. typhi between weak to moderate.


2021 ◽  
Vol 72 (1) ◽  
pp. 2703
Author(s):  
I VAR ◽  
S UZUNLU ◽  
I DEĞIRMENCI

The use of natural food additives is currently a rising trend. In the present study, the aim was to determine the antimicrobial effects of plum, pomegranate, Seville orange and sumac sauces on E. coli O157:H7,E. coli type I,Listeriamonocytogenes, Listeria ivanovii, Salmonella Typhimurium and Staphylococcus aureus. Different concentrations (1%, 10%, 100%, v/v) of the sauces were tested on the studied bacteria in vitro using the agar diffusion and minimal inhibition concentration (MIC) methods. The results showed that the sumac sauce had the highest antimicrobial activity. The Seville orange, plum and pomegranate sauces also exerted antimicrobial activity in descending order. The antimicrobial activity of the fruit sauces was more effective at a concentration of 100% than at 10% and 1%, v/v. The most inhibitory effect was recorded for sumac sauce at a concentration of 100% (v/v) on L.monocytogenesand E. coli O157:H7. The findings of the MIC method aligned with the agar diffusion method. In addition, the in situ(food method) antimicrobial effect of the sauces on the indigenous microflora of chicken breast samples sold in stores was determined. Chicken samples hosting aerobic mesophilic bacteria, coliforms and E. coli were treated for two hours at 4 °C with plum, pomegranate, Seville orange and sumac sauces and were then monitored. The findings revealed that the Seville orange and sumac sauces were the most effective in reducing the indigenous microbial growth on the chicken samples. The plum sauce showed higher antimicrobial activity than pomegranate sauce. The phenolic content and acidity of the samples significantly (P< 0.05) affected the antimicrobial activity both in vitro (agar diffusion and MIC) and in situ (chilled chicken breast). In conclusion, the sumac and Seville orange sauces were found to be the most promising natural antibacterial agents, and their use could be recommended, for example, in catering services to reduce the risk of foodborne illness.


2021 ◽  
Vol 5 (1) ◽  
pp. 436-444
Author(s):  
Sabiu Shitu ◽  
M. Attahiru ◽  
F. A. Iliya

The antibacterial activity of Tokar sha; a local traditional medication widely used by many people in North-west zone of Nigeria especially Sokoto, Kebbi and Zamfara against enteric infections were examined against some clinical isolates of pathogenic bacteria (Staphylococcus aureus, Escherichia coli, Bacillus cereus and Salmonella typhi) using agar well diffusion method. The pattern of inhibition varied with the tokar sha concentrations and the organisms tested. The tokar sha was more effective on E. coli with a maximum zone of growth inhibition of 25mm at 35mg/ml followed by B. cereus (20mm). However, S. aureus and S. typhi were resistant to tokar sha at all concentrations tested. The minimum inhibitory concentrations (MIC) were found to be 35mg/ml for both E. coli and B. cereus. The antibacterial activities exhibited by tokar sha in this study could be attributed to the presence of its constituents which signifies the potential of the tokar sha as a therapeutic agent. These findings may justify the ethnomedicinal use of tokar sha as an antibacterial agent against enterobacteria


2018 ◽  
Vol 10 (1) ◽  
pp. 67-76
Author(s):  
M. A. Rahim ◽  
M. M. H. Bhuiyan ◽  
M. M. Matin ◽  
M. R. Alam

Two chloroflavones, 6 and 7 along with their corresponding chalcones, 4 and 5 have been tested for antibacterial and antifungal activities against six human pathogenic bacteria viz. Bacillus cereus (G+), Staphylococcus aureus (G+), Escherichia coli (G-), Vibrio choloriae (G-), Pseudomonas aeruginosa (G-), and Salmonella typhi (G-), and four plant as well as mold fungi viz. Aspergillus flavus, Aspergillus ochraceus, Aspergillus niger and Rhizopus spp.. The antibacterial and antifungal screens of the synthesized compounds were performed in vitro by the filter paper disc diffusion method and the poisoned food technique, respectively. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of these synthesized compounds in comparison to ampicillin were also determined by broth micro-dilution method. Some of them were found to possess significant activity, when compared to standard drugs.


2010 ◽  
Vol 7 (3) ◽  
pp. 882-886
Author(s):  
S. B. Junne ◽  
Archana B. Kadam ◽  
S. L. Shinde ◽  
G. S. Waghamare ◽  
Y. B. Vibhute

Some new halo substituted Schiff bases have been prepared from different aromatic aldehydes and a series of substituted aromatic amines to form a number of potentially biologically active compounds. The structures of the Schiff bases have been characterized by using IR and1HNMR spectroscopy. These compounds were screened against human pathogenic bacteria by agar diffusion method. Ampicillin was used as control.


2021 ◽  
Vol 6 (1) ◽  
pp. 064-070
Author(s):  
Ayda Ali Khalifa ◽  
Ali A ElGadal ◽  
Firooz M Youssif ◽  
Mutaman A Kehail

Microbial resistance to antibiotics has become a problem plaguing the world. Currently, interest has been focused on exploring antimicrobial properties of plants and herbs. This work aim to evaluate the antibacterial activity of garlic (Allium sativum) bulbs and ginger (Zingiber officinale) rhizome on Brucella abortus isolates. Some concentrations of garlic and ginger extracts were tested for their antibacterial activity against B. abortus isolate brought from Central Veterinary Research Laboratory (CVRL), Soba, using well diffusion method. Moreover, minimum inhibitory concentration (MIC) and minimum lethal concentration (MLC) of garlic and ginger were tested using broth dilution method. Sensitivity pattern of the conventional antibacterial against common pathogenic bacteria was tested using disc diffusion method. Aqueous extract of ginger produced dose-dependent increase in the zone of inhibition at a concentration of 15% and higher, whereas the garlic extract produced inhibition zone at a concentration of 5% and higher, i.e. B. abortus isolate showed relatively high sensitivity toward garlic extract than ginger which required a more concentrated extract to kill or inhibit B. abortus isolate that brought from (CVRL), Soba, Khartoum, Sudan. Further studies are needed to find out the efficacy, safety, and kinetic data of their active ingredients.


Sign in / Sign up

Export Citation Format

Share Document