scholarly journals The Effect of the Activator/Precursor Ratio on the Rheological Properties of the Alkali-activated Mining Waste Mud Paste

2020 ◽  
Author(s):  
Abdelhakim Benhamouda ◽  
João Castro-Gomes ◽  
Luiz Pereira-de-Oliveira

To determine the properties of paste, mortar or concrete, it is necessary to understand its rheological behaviour first. This study discusses the effect of the activator/precursor ratio on the rheological properties of the alkali-activated paste. The pastes consisted of a mix of 70 % of tungsten mining waste mud, 15% waste glass and 15% of metakaolin. This mix was activated by combining sodium hydroxide and sodium silicate. Five activator/precursor (a/p) ratios were studied: 0.37, 0.38, 0.39, 0.40 and 0.41. The result obtained shows that the rheology of the pastes is affected by the activator/precursor ratio. The rheological behaviour of the paste fits the Bingham model. The yield stress (τ0) and plastic viscosity (μ) increase inversely with the activator/precursor ratio (e.g. a/p=0.37 gives τ0=84.19 and μ=0.4185; a/p=0.41 gives τ0=30.389 and μ=0.2937). The workability increases proportionally with the activator/precursor ratio (e.g. a/p=0.37 gives a slump=133 mm; a/p=0.41 gives a slump=158 mm). The compressive strength decreases when the activator/precursor ratio increases (e.g. at 28 days for a/p=0.37, the compressive strength was 19.6 MPa; for a/p=0.41, the compressive strength was 13 MPa). Finally, the ideal ratios were 0.38 and 0.39.

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5405
Author(s):  
Biruk Hailu Tekle ◽  
Ludwig Hertwig ◽  
Klaus Holschemacher

Alkali-activated cement (AAC) is an alternative cement that has been increasingly studied over the past decades mainly because of its environmental benefits. However, most studies are on heat-cured AACs and are focused on mechanical properties. There is a lack of research on the fresh properties of ambient-cured AAC systems. This study investigates the rheological properties of ambient-temperature-cured alkali-activated blended binder mixtures activated with sodium silicate and sodium hydroxide solutions. The influence of binder amount, alkaline solid to binder ratio (AS/B), sodium silicate to sodium hydroxide solids ratio (SS/SH), and total water content to total solid (from the binding materials) ratio (TW/TS) on the rheological properties are investigated. The effect of borax as an admixture and silica fume as a replacement for fly ash is also investigated. The results showed that both the yield stress and plastic viscosity are mainly affected by the binder content and TW/TS ratio decreasing with the increase of each parameter. The yield stress increased with the increase of the SS/SH ratio. Borax significantly reduced the yield stress, while silica fume’s effect was dependent on its dosage.


2020 ◽  
Author(s):  
Abdelhakim Benhamouda ◽  
João Castro-Gomes

The rheological properties of Portland cement (PC) concrete have been extensively studied and compared with those of alkali-activated concrete (AAC). This study discusses the effect of the liquid to solid ratio on the rheological and mechanical properties of AAM concrete, based on mining waste mud as the binder phase, and compares them with those of Portland cement concrete (PCC). The AAM concrete studied is a mix of coarse aggregate 6/15, two types of sand (finer and coarse sand), and a precursor. The precursor is a mix of 70% tungsten mining waste mud, 15% waste glass and 15% metakaolin. This mix was activated by a combination of sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) and the PCC was a mix of the same aggregate but with cement as binder and water as a liquid. The activator/precursor ratio was studied 0.5, 0.52, 0.54, 0.56 and 0.58. The results obtained show a similar rheological behaviour between AAC and PCC, the workability affected by L/S increases with the increasing ratio L/S in AAC and for L/S=0.5 slump was 6 cm and was 16 cm for L/S =0.58. Regarding the mechanical properties, the results obtained in 7 days showed similar performance in AAC and PCC. The compressive strength also decreases with the increasing of L/S, in AAC with L/S=0.5 the compressive strength was 15.9 MPa and for L/S =0.58 was 10.5. Keywords: Tungsten mining waste, Rheology, Mechanical properties, Portland cement, alkali-activated concrete


2021 ◽  
Vol 11 (23) ◽  
pp. 11141
Author(s):  
Tae-Woong Kong ◽  
Hyun-Min Yang ◽  
Han-Seung Lee ◽  
Chang-Bok Yoon

High fluidity concrete exhibits an excellent self-compacting property. However, the application of typical high-fluidity concrete is limited in the normal strength range (18~35 MPa) due to the large amount of binder. Therefore, it is important to solve these problems by adding a viscosity modifying agent (VMA) with a superplasticizer (PCE), which helps to improve the fluidity of the concrete. In addition, the rheology and stability of the concrete with VMA can be improved by preventing bleeding and segregation issues. Current studies focused on the physical phenomena of concrete such as the fluidity, rheological properties, and compressive strength of normal-strength, high-fluidity concrete (NSHFC) with different types of a polycarboxylate-based superplasticizer (NPCE). The obtained results suggested that the combinations of all-in-one polycarboxylate-based superplasticizers (NPCE) did not cause any cohesion or sedimentation even stored for a long time. The combination of three types of VMA showed the best fluidity (initial slump flow of 595~630 mm) without any segregation and bleeding, and the compressive strength at 28 days was also found to be the highest: 34–37 MPa. From these results, the combination of PCE (2.0%) + HPMC (0.3%) + WG (0.1%) + ST (0.1%) showed an 18% higher plastic viscosity and -4.4% lower yield stress than Plain.


2010 ◽  
Vol 156-157 ◽  
pp. 803-807
Author(s):  
Fu Sheng Niu ◽  
Shan Shan Zhou ◽  
Shu Xian Liu ◽  
Jin Xia Zhang

The tailings and slag based geopolymers was prepared by sodium silicate, sodium hydroxide alkali-activated tailings and slag. The compressive strength in 7 d under different raw material proportion were tested. The result indicated that tailings and slag based geopolymers has high compressive strength . As the tailings in slag is 80%, the compressive strength in 7d can reach 45.10 MPa . As the Na2SiO3 to NaOH ratio is 0.5, the compressive strength in 7d can reach 63.79 MPa. As the NaOH and sodium silicate concentration in the solution is 35%, the compressive strength in 7d can reach 38.35 MPa respectively; As the curing period is 14 d , the compressive strength can reach 71.25 MPa. As the steel scoria in solid is 20%, the compressive strength in 7d can reach 61.86 MPa respectively.


2020 ◽  
Vol 10 (15) ◽  
pp. 5190
Author(s):  
Danutė Vaičiukynienė ◽  
Dalia Nizevičienė ◽  
Aras Kantautas ◽  
Vytautas Bocullo ◽  
Andrius Kielė

There is a growing interest in the development of new cementitious binders for building construction activities. In this study, biomass bottom ash (BBA) was used as aluminosilicate precursor and phosphogypsum (PG) was used as a calcium source. The mixtures of BBA and PG were activated with the sodium hydroxide solution or the mixture of sodium hydroxide solution and sodium silicate hydrate solution. Alkali activated binders were investigated using X-ray powder diffraction (XRD), X-ray fluorescence (XRF) and scanning electron microscopy (SEM) test methods. The compressive strength of hardened paste and fine-grained concrete was also evaluated. After 28 days, the highest compressive strength reached 30.0 MPa—when the BBA was substituted with 15% PG and activated with NaOH solution—which is 14 MPa more than control sample. In addition, BBA fine-grained concrete samples based on BBA with 15% PG substitute activated with NaOH/Na2SiO3 solution showed higher compressive strength compered to when NaOH activator was used −15.4 MPa and 12.9 MPa respectfully. The NaOH/Na2SiO3 activator solution resulted reduced open porosity, so potentially the fine-grained concrete resistance to freeze and thaw increased.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2286
Author(s):  
Taewan Kim ◽  
Sungnam Hong ◽  
Choonghyun Kang

This study investigates the characteristics of alkali-activated slag cement using aluminium sulphate (ALS) as an activator. The alkalis NaOH and Na2SiO3 were used as additional activators (denoted by alkali) at 5% and 10% of the weight of the ground granulated blast furnace slag (GGBFS). Three types of activators were considered. The first was when ALS was used alone. For the second, ALS and 5% alkali were used together. The third was when ALS and 10% alkali were used. ALS was used at concentrations of 2%, 4%, 6%, 8%, and 10% based on binder weight. Experimental results show that when ALS was used as a sole activator, the activity of GGBFS was low and its strength was below 1 MPa. However, compressive strength was improved when 5% or 10% alkali and ALS were used at the same time. This was effective at improving mechanical and microstructural performance when used with an additional activator capable of forming a more alkaline environment than using ALS as a sole activator.


2015 ◽  
Vol 754-755 ◽  
pp. 300-304 ◽  
Author(s):  
Aimi Noorliyana Hashim ◽  
Kamarudin Hussin ◽  
Noorzahan Begum ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Kamrosni Abdul Razak ◽  
...  

Energy saving in building technology is among the most critical problems in the world. Thus it is a need to develop sustainable alternatives to conventional concrete utilizing more environmental friendly materials. One of the possibilities to work out is the massive usage of industrial wastes like ground granulated blast furnace slag (GGBS) to turn them to useful environmental friendly and technologically advantageous cementitious materials. In this study, ground granulated blast furnace slag (GGBS) is used to produce of alkali activated slag (AAS) mortar with the effect of alkaline activator concentration. Alkali activated slag (AAS) mortar is accelerated using alkaline solution of sodium silicate mixed with sodium hydroxide. The fixed ratio of sodium silicate to sodium hydroxide is 1.7 and the concentration of sodium hydroxide is varied from 6M to 12M. Concentration of 10M NaOH promotes the best properties of mortar by achieving the greatest compressive strength. Substitution of mineral admixture also influences strength performance of AAS mortars. The mortar with 20% calcium carbonate demonstrates the maximum compressive strength. The used of alkaline activation system is the best method to prepare industrial byproduct concrete. Moreover, alkali activated product itself gains superior properties which lead to the system become the most interesting method to produce sustainable concrete.


2013 ◽  
Vol 734-737 ◽  
pp. 1077-1081 ◽  
Author(s):  
Jin Xia Zhang ◽  
Shu Xian Liu ◽  
Jun Xie

The tailings and slag based mine filling cementitious materials was prepared by sodium silicate and sodium hydroxide alkali-activated tailings and slag. Through the test that the cementing materials in the best ratio of raw materials: when slag and tailings admixture is 1.25, the content of NaOH was 50%, the amount of sodium hydroxide for 50%, water cement ratio of 0.22, under the condition of normal temperature curing 7 days, eventually making a compressive strength of 52.3MPa cementing materials.


CivilEng ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 236-253
Author(s):  
Abdelhakim Benhamouda ◽  
João Castro-Gomes ◽  
Luiz Pereira-de-Oliveira

Alkali-activated materials have the potential to replace Portland cement in certain applications. To better understand these binders’ properties, it is relevant to study their rheological behaviour at early ages, like in the case of Portland cement paste. There are already many studies on the rheological behaviour of these materials in the available literature, using fly ash, metakaolin, and ground granulated blast furnace slag as precursors. However, this study discusses the rheological behaviour, mechanical properties, and porosity of ternary alkali-activated binders based on mining mud waste, waste glass, and metakaolin. The precursor consisted of a volume mix of 70% of tungsten mining waste mud, 15% glass waste, and 15% of metakaolin. The activator was a combination of sodium hydroxide and sodium silicate solution. Five activator/precursor (A/P) ratios (0.37, 0.38, 0.39, 0.40, and 0.4) were studied. The result showed that the activator/precursor ratio affects the rheology of paste and their rheological behaviour fit the Bingham model. The relative yield stress (g) and plastic viscosity (h) increased inversely with the A/P ratio, while the workability increased proportionally. Furthermore, some empirical models are proposed to describe the characteristic of yield stress: plastic viscosity and spread diameter versus the A/P ratio and time with a correlation between the rheological parameters and the spread diameter. The increase in A/P ratio has also followed a decrease in compressive strength in all tested samples for all the ages. As expected, an increase of the porosity accompanied the increase of the A/P ratio.


Sign in / Sign up

Export Citation Format

Share Document