scholarly journals Beauveria attenuates asthma by inhibiting inflammatory response and inducing lymphocytic cell apoptosis

Oncotarget ◽  
2016 ◽  
Vol 7 (46) ◽  
pp. 74557-74568 ◽  
Author(s):  
Jingying Zhang ◽  
Xianmei Zhou ◽  
Jiping Zhu
RSC Advances ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 4441-4441
Author(s):  
Laura Fisher

Retraction of ‘Salvianolic acid B inhibits inflammatory response and cell apoptosis via the PI3K/Akt signalling pathway in IL-1β-induced osteoarthritis chondrocytes’ by Bin Zhu et al., RSC Adv., 2018, 8, 36422–36429, DOI: 10.1039/C8RA02418A.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qingsong Sun ◽  
Man Luo ◽  
Zhiwei Gao ◽  
Xiang Han ◽  
Weiqin Wu ◽  
...  

Abstract Background Acute lung injury (ALI) is a pulmonary disorder that leads to acute respiration failure and thereby results in a high mortality worldwide. Increasing studies have indicated that toll-like receptor 4 (TLR4) is a promoter in ALI, and we aimed to explore the underlying upstream mechanism of TLR4 in ALI. Methods We used lipopolysaccharide (LPS) to induce an acute inflammatory response in vitro model and a murine mouse model. A wide range of experiments including reverse transcription quantitative polymerase chain reaction, western blot, enzyme linked immunosorbent assay, flow cytometry, hematoxylin–eosin staining, RNA immunoprecipitation, luciferase activity and caspase-3 activity detection assays were conducted to figure out the expression status, specific role and potential upstream mechanism of TLR4 in ALI. Result TLR4 expression was upregulated in ALI mice and LPS-treated primary bronchial/tracheal epithelial cells. Moreover, miR-26a-5p was confirmed to target TLR4 according to results of luciferase reporter assay. In addition, miR-26a-5p overexpression decreased the contents of proinflammatory factors and inhibited cell apoptosis, while upregulation of TLR4 reversed these effects of miR-26a-5p mimics, implying that miR-26a-5p alleviated ALI by regulating TLR4. Afterwards, OPA interacting protein 5 antisense RNA 1 (OIP5-AS1) was identified to bind with miR-26a-5p. Functionally, OIP5-AS1 upregulation promoted the inflammation and miR-26a-5p overexpression counteracted the influence of OIP5-AS1 upregulation on cell inflammatory response and apoptosis. Conclusion OIP5-AS1 promotes ALI by regulating the miR-26a-5p/TLR4 axis in ALI mice and LPS-treated cells, which indicates a promising insight into diagnostics and therapeutics in ALI.


2014 ◽  
Vol 93 (1) ◽  
pp. 178-188 ◽  
Author(s):  
I-Neng Lee ◽  
Wan-Chun Cheng ◽  
Chiu-Yen Chung ◽  
Ming-Hsueh Lee ◽  
Martin Hsiu-Chu Lin ◽  
...  

2010 ◽  
Vol 30 (01) ◽  
pp. 5-9 ◽  
Author(s):  
J. Xu ◽  
F. Lupu ◽  
C. T. Esmon

SummaryInflammation drives arterial, venous and microvascular thrombosis. Chronic inflammation contributes to arterial thrombotic complications, whereas acute inflammation drives venous thrombosis and microvascular thrombosis. Mechanistically, inflammation modulates thrombotic responses by upregulating procoagulants, downregulating anticoagulants and suppressing fibrinolysis. The inflammatory response can also result in cell apoptosis or necrosis. Products released from the dead cells, particularly histones, propagate further inflammation, tissue death and organ failure.Inhibition of histone mediated cytotoxicity appears to be a new mechanism for protecting against this deadly cascade.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Shan Zhu ◽  
Yuan Wang ◽  
Hongtao Liu ◽  
Wen Wei ◽  
Yi Tu ◽  
...  

Background. Numerous studies have demonstrated that the inflammatory response is involved in the progression of lipopolysaccharide- (LPS-) induced myocardial cell apoptosis. Accumulating evidence has shown that thyroxine participates in diseases by downregulating the inflammatory response. This study aimed at investigating whether thyroxine alleviates LPS-induced myocardial cell apoptosis. Methods. Bone marrow-derived macrophages (Mø) were treated with LPS and thyroxine, and Mø differentiation and Mø-related cytokine expression were measured. The effect of Mø differentiation on mouse cardiomyocyte (MCM) apoptosis was also detected in vitro. In addition, C57BL/6 mice underwent thyroidectomy and were treated with LPS 35 days later; subsequently, Mø differentiation and myocardial cell apoptosis in hearts were analyzed. To determine whether the nuclear factor-kappa B (NF-κB) p65 pathway mediates the effect of thyroxine on Mø differentiation and myocardial cell apoptosis, the specific NF-κB p65 pathway inhibitor JSH-23 was administered to mice that underwent a thyroidectomy. Results. Levothyroxine treatment significantly reduced the activation of the NF-κB p65 pathway, decreased M1 macrophage (Mø1) differentiation and Mø1-related cytokine mRNA levels in LPS-treated Mø, and increased M2 macrophage (Mø2) differentiation and Mø2-related cytokine mRNA expression. The protective effects of levothyroxine on MCM apoptosis mediated by LPS-treated Mø were alleviated by JSH-23. In mice, thyroidectomy aggravated LPS-induced cardiac injury and cardiac dysfunction, further promoted NF-κB p65 activation, and increased cardiac Mø1 expression and myocardial cell apoptosis but decreased cardiac Mø2 expression. JSH-23 treatment significantly ameliorated the thyroidectomy-induced increases in myocardial cell apoptosis and Mø differentiation. Conclusions. Thyroxine alleviated the Mø1/Mø2 imbalance, reduced the inflammatory response, decreased myocardial cell apoptosis, and protected against cardiac injury and cardiac dysfunction in LPS-treated mice. Thyroxine may be a novel therapeutic strategy to prevent and treat LPS-induced cardiac injury.


1997 ◽  
Vol 273 (5) ◽  
pp. L921-L929 ◽  
Author(s):  
Long-Ping Wen ◽  
Kamyar Madani ◽  
Jimothy A. Fahrni ◽  
Steven R. Duncan ◽  
Glenn D. Rosen

Lung epithelium plays a central role in modulation of the inflammatory response and in lung repair. Airway epithelial cells are targets in asthma, viral infection, acute lung injury, and fibrotic lung disease. Activated T lymphocytes release cytokines such as interferon-γ (IFN-γ) that can cooperate with apoptotic signaling pathways such as the Fas-APO-1 pathway to induce apoptosis of damaged epithelial cells. We report that IFN-γ alone and in combination with activation of the Fas pathway induced apoptosis in A549 lung epithelial cells. Interestingly, the corticosteroid dexamethasone was the most potent inhibitor of IFN-γ- and IFN-γ plus anti-Fas-induced apoptosis. IFN-γ induced expression of an effector of apoptosis, the cysteine protease interleukin-1β-converting enzyme, in A549 cells. Dexamethasone, in contrast, induced expression of an inhibitor of apoptosis, human inhibitor of apoptosis (hIAP-1), also known as cIAP2. We suggest that the inhibition of epithelial cell apoptosis by corticosteroids may be one mechanism by which they suppress the inflammatory response.


2018 ◽  
Author(s):  
Hong Wang ◽  
Juan D. Latorre ◽  
Mohit Bansal ◽  
Mussie Abraha ◽  
Bilal Al-Rubaye ◽  
...  

AbstractClostridium perfringens-induced necrotic enteritis (NE) has reemerged as a prevalent chicken disease worldwide due to reduced usage of prophylactic antibiotics. The lack of antimicrobial alternative strategies to control NE is mainly due to limited insight into the disease pathogenesis. The aim of this study is to investigate the role of microbiota metabolic product secondary bile acid deoxycholic acid (DCA) on preventing NE.C. perfringensgrowth was inhibited by 82.8% in 50 μM DCA Tryptic Soy Broth. SequentialEimeria maximaandC. perfringenschallenges induced acute NE showed as severe intestinal inflammation and body weight (BW) loss in broiler chickens, while 1.5 g/kg DCA diet dramatically reduced the disease. At the cellular level, DCA alleviated NE-associated ileal epithelial death and reduced lamina propria cell apoptosis. Interestingly, DCA reducedC. perfringensinvasion into ileum without altering the bacterial ileal luminal colonization. Molecular analysis showed that DCA reduced inflammatory mediators ofInfγ,Litaf, andMmp9mRNA accumulation in ileal tissue. Mechanism studies revealed thatC. perfringensinduced elevated expression of inflammatory mediators ofInfγ,Litaf,Mmp9,andPtgs2(Cyclooxygenase- 2 (COX-2) gene) in chicken splenocytes. Blocking COX signaling by pharmacological inhibitor aspirin attenuated INFγ-induced inflammatory response in the splenocytes. Consistent with thein vitroassay, chickens fed 0.12 g/kg aspirin diet protected the birds against NE-induced ileal inflammation, intestinal cell apoptosis, and BW loss. In conclusion, microbial metabolic product DCA prevents NE-induced ileal inflammation and BW loss through attenuating inflammatory response. These novel findings offer new strategies againstC. perfringens-induced diseases.Significance StatementWidespread antimicrobial resistance has become a serious challenge to both agricultural and healthcare industries. Withdrawing antimicrobials without effective alternatives exacerbates chicken productivity loss at billions of dollars every year, caused by intestinal diseases, such as coccidiosis-andC. perfringens-induced necrotic enteritis. This study revealed that microbial metabolic product secondary bile acid DCA preventsC. perfringens-induced intestinal disease in chickens through modulating inflammatory COX signaling pathways. Therefore, microbiome and its downstream targets of host inflammatory responses could be used to control NE. These findings have opened new avenues for developing novel antimicrobial free alternatives to prevent or treatC. perfringens-induced diseases.


2021 ◽  
Author(s):  
Qiang Wei ◽  
Xi Chen ◽  
Chuanjiang Wang

Abstract Objective: Interleukin-38 (IL-38), a new type of cytokine, is involved in processes such as tissue repair, inflammatory response, and immune response. However, its function in pneumonia caused by Pseudomonas aeruginosa is still unclear.Methods: In this study, we detected circulating IL-38 in adults affected by pneumonia caused by P. aeruginosa. The P. aeruginosa-induced pneumonia WT murine model was adopted to evaluate the effect of IL-38 on Treg differentiation, cell apoptosis, survival, tissue damage, inflammation, and bacterial removal.Results: IL-38 is insufficiently secreted in patients who died of P.A. pneumonia.Recombinant IL-38 improved survival, whereas anti-IL-38 antibody reduced survival in the experimental pneumonia murine model. IL-38 exposure reduced the inflammatory response, as suggested by the lung injury, and reduced cytokine levels (IL-1β, IL-6, IL-17A, TNF-α, and CXCL-1, but not IL-10). It also increased bacterial clearance and reduced cell apoptosis in the lungs. Furthermore, IL-38 was shown to reduce TBK1 expression in vitro when naïve CD4+ T lymphocytes were differentiated to Tregs and played a protective role in P.A. pneumonia.Conclusions: To summarize, the above findings provide additional insights into the mechanism of IL-38 in the treatment of P.A. pneumonia.


Sign in / Sign up

Export Citation Format

Share Document