scholarly journals Underutilized Fruits of Assam for Livelihood and Nutritional Security

2019 ◽  
Vol 40 (03) ◽  
Author(s):  
U Barua ◽  
R P Das ◽  
B Gogoi ◽  
S R Baruah

India is endowed with a rich genetic diversity of fruits. The Hindustani centre represents 344 species of fruits. Northeast India, meeting ground of Indo-Malayan and Indo-Chinese bio-geographical areas is one of the 18 mega-biodiversity centers of the World, has contributed the fruit genera like Citrus, Musa, Mangifera, Docynia, Elaeocarpus, Myrica, Morus, Artocarpus, etc. There are a quite large number of indigenous and underutilized fruit crops, which are being used by the local inhabitants in rural areas. These underutilized fruits are fairly rich in vitamins, minerals, antioxidant properties and are serving as protective food. Because of their curative properties, different parts of these fruit and plants have been used in ethno-medicines. Apart from their nutritive and medicinal values quite a few of these underutilized fruits have good flavor, colour and juice content and can be used for value additions. Several underutilized fruit species which have potential for commercial exploitation are yet to be utilized to their potential. These fruit crops have not undergone any conscious phase of domestication and selection. Their cultivation is very restricted and they grow in wild and semi wild condition and adapted to local climatic conditions. Hence they can thrive even under most adverse situation. Their adoption on a commercial scale, with crop improvement, standardization of cultural practices and popularization in diverse farming systems and value additions are warranted to achieve stability in farm production and food security. Many underutilized species, well adapted to marginal lands and with low cost inputs, may thus be of great benefit for the survival of poor communities, employment generation and sustainability of agricultural ecosystems.

Biologia ◽  
2009 ◽  
Vol 64 (3) ◽  
Author(s):  
Valérie Hauchart

AbstractCotton cropping has been developing for more than 40 years in the western part of Burkina Faso. It has made a definite modernization of the traditional farming system. Modernization is illustrated by adoption of specific agricultural practices like monoculture, tillage, straight sowing and slope ridge planting. Misuse and non-adaptable local pedologic and climatic context of these new practices perturb soil hydrological processes. Outcomes are water loss by runoff, erosion and changes in the soils physical and physiochemical properties.Besides, we can notice in this area for more than 30 years climatic changes which require us to ask ourselves what are the resulting consequences. In fact, these climatic changes generate an extension of the rainy season, an increase in the frequency of high intensity spells but also recurrence of dry spells during the rainy season. Do these new climatic conditions exacerbate the consequences of cotton practices on hydrological processes and induce an aggravation of flow and erosion processes?These evolutions have direct consequences on crop production whereas needs are highly increasing. The improvement of the prevailing agricultural practices and innovative practices might provide improved pluvial resources in critical moments such as rainfall excess at the beginning and the end of the rainy season and short drought conditions after sowing or germination and during flowering. However two questions arise. In the rainfed agriculture, which cultural practices (to reduce runoff and to favour infiltration) are, in regard to pedologic, climatic or socio-economic context, able to allow improved water efficiency and, as a result, an increase of the food grains production? Might selected practices and production addition satisfy requirements of the coming population?


HortScience ◽  
2022 ◽  
Vol 57 (2) ◽  
pp. 239-246
Author(s):  
Krishna Nemali

Modern greenhouses are intensive farming systems designed to achieve high efficiency and productivity. Plants are produced year-round in greenhouses by maintaining the environment at or near optimum levels regardless of extreme weather conditions. Many scientific discoveries and technological advancements that happened in the past two centuries paved the way for current state-of-the-art greenhouses. These include, but are not limited to, advancements in climate-specific structural designs and glazing materials, and temperature control, artificial lighting, and hydroponic production systems. Greenhouse structures can be broadly grouped into four distinct designs, including tall Venlo greenhouses of the Netherlands, passive solar greenhouses of China, low-cost Parral greenhouses of the Mediterranean region, and gutter-connected polyethylene houses of India and African countries. These designs were developed to suit local climatic conditions and maximize the return on investment. Although glass and rigid plastic options are available for glazing, the development of low-cost and lightweight plastic glazing materials (e.g., polyethylene) enabled widespread growth of the greenhouse industry in the developing world. For temperate regions, supplemental lighting technology is crucial for year-round production. This heavily relies on advancements in electro-lighting during the 19th and 20th centuries. The development of hydroponic production systems for the controlled delivery of nutrients further enhanced crop productivity. This article addresses important historical events, scientific discoveries, and technological improvements related to advancements in these areas.


2021 ◽  
Vol 10(1) (10(1)) ◽  
pp. 333-348
Author(s):  
Ngonidzashe Makwindi ◽  
Joram Ndlovu

The purpose of this article was to examine the prospects and challenges of community based tourism as a livelihood diversification strategy for people living adjacent to the Sehlabathebe National Park in Lesotho. The main objective was to explore how rural communities living close to the World Heritage Site shift and diversity their livelihoods from farm to non-farm activities in order to sustain their livelihoods. This study adopted a mixed method approach. Data was collected through surveys (286) and in-depth key informant interviews (11). The results show that local communities support the use of tourism as a livelihood diversification strategy to provide off-farm entrepreneurial opportunities. The greatest challenge is that local communities are often pushed into marginal lands, with harsh climatic conditions resulting in the disruption of local fabric and their economies. The study concludes that the establishment of Sehlabathebe National Park has not significantly improved the status quo of the community. Therefore, local communities should be given opportunities to sell their products and services to tourists and work in partnership with park authorities in conserving the park resources. The paper contributes to the current discourses on the use of community based tourism as a livelihood diversification strategy in rural areas.


2017 ◽  
Vol 48 (1) ◽  
pp. 80-84
Author(s):  
J Gnanaraj

Cystometrography (CMG) is a means of studying bladder pressure. It is a very useful diagnostic tool in patients with lower urinary tract symptoms for which a simple cystoscopy will not offer sufficient information to form a diagnosis. Of the 8893 patients who underwent screening for urological conditions in rural northeast India during 2010–2014, 280 with lower urinary tract symptoms were investigated with a combination of cystoscopy and CMG. By corresponding CMG diagnosis and treatment, we could examine patients’ overall satisfaction with both the procedure and the treatment. We describe a low-cost method of CMG and our results using this method in rural areas of India.


2018 ◽  
Vol 2 (95) ◽  
pp. 78-81
Author(s):  
L.I. Shkarivska

The changes of the soil’s humus soil within the rural areas are investigated for the organic farming system. The most significant impact of organic agriculture on humus content over 55% was observed on soddy podzolic soils (V>75%), the lowest –7,5% on typical chernozem (V≈16%). Changes in the qualitative composition of humus for the introduction of various types of organic substrates are analyzed.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 550
Author(s):  
Panagiotis Kanatas ◽  
Ioannis Gazoulis ◽  
Ilias Travlos

Irrigation is an agronomic practice of major importance in alfalfa (Medicago sativa L), especially in the semiarid environments of Southern Europe. Field experimentation was conducted in Western Greece (2016–2018) to evaluate the effects of irrigation timing on weed presence, alfalfa yield performance, and forage quality. In a randomized complete block design (four replications), two cultivars (“Ypati 84” and “Hyliki”) were the main plots, while three irrigation timings were the subplots (split-plot). The irrigation timings were IT-1, IT-2, and IT-3, denoting irrigation 1 week before harvest, 1 week after harvest, and 2 weeks after harvest, respectively. IT-1 reduced Solanum nigrum L. density by 54% and 79% as compared to IT-3 and IT-2, respectively. Chenopodium album L. density was the highest under IT-2. IT-3 resulted in 41% lower Amaranthus retroflexus L. density in comparison to IT-2, while the lowest values were observed under IT-1. Stand density and stems·plant−1 varied between years (p ≤ 0.05). Mass·stem−1 and alfalfa forage yield were affected by the irrigation timings (p ≤ 0.001). Total weed density and forage yield were negatively correlated in both the second (R2 = 87.013%) and the fourth (R2 = 82.691%) harvests. IT-1 and IT-3 increased forage yield, leaf per stem ratio, and crude protein as compared to IT-2. Further research is required to utilize the use of cultural practices for weed management in perennial forages under different soil and climatic conditions.


2021 ◽  
Vol 13 (5) ◽  
pp. 2836
Author(s):  
Khawar Shahzad ◽  
Muhammad Sultan ◽  
Muhammad Bilal ◽  
Hadeed Ashraf ◽  
Muhammad Farooq ◽  
...  

Poultry are one of the most vulnerable species of its kind once the temperature-humidity nexus is explored. This is so because the broilers lack sweat glands as compared to humans and undergo panting process to mitigate their latent heat (moisture produced in the body) in the air. As a result, moisture production inside poultry house needs to be maintained to avoid any serious health and welfare complications. Several strategies such as compressor-based air-conditioning systems have been implemented worldwide to attenuate the heat stress in poultry, but these are not economical. Therefore, this study focuses on the development of low-cost and environmentally friendly improved evaporative cooling systems (DEC, IEC, MEC) from the viewpoint of heat stress in poultry houses. Thermodynamic analysis of these systems was carried out for the climatic conditions of Multan, Pakistan. The results appreciably controlled the environmental conditions which showed that for the months of April, May, and June, the decrease in temperature by direct evaporative cooling (DEC), indirect evaporative cooling (IEC), and Maisotsenko-Cycle evaporative cooling (MEC) systems is 7–10 °C, 5–6.5 °C, and 9.5–12 °C, respectively. In case of July, August, and September, the decrease in temperature by DEC, IEC, and MEC systems is 5.5–7 °C, 3.5–4.5 °C, and 7–7.5 °C, respectively. In addition, drop in temperature-humidity index (THI) values by DEC, IEC, and MEC is 3.5–9 °C, 3–7 °C, and 5.5–10 °C, respectively for all months. Optimum temperature and relative humidity conditions are determined for poultry birds and thereby, systems’ performance is thermodynamically evaluated for poultry farms from the viewpoint of THI, temperature-humidity-velocity index (THVI), and thermal exposure time (ET). From the analysis, it is concluded that MEC system performed relatively better than others due to its ability of dew-point cooling and achieved THI threshold limit with reasonable temperature and humidity indexes.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Mingjing Zhu ◽  
Binsheng Luo ◽  
Ben La ◽  
Ruijie Chen ◽  
Fenggui Liu ◽  
...  

Abstract Background Salar is a Turkic-speaking Islamic ethnic group in China living mainly in Xunhua Salar Autonomous County (Xunhua or Xunhua County), Qinghai-Tibet Plateau. Salar people are skilled in horticulture and their homegarden (HG) management. They are regarded as the first people on the Qinghai-Tibet Plateau to practice horticulture, especially manage their HGs, traditional farming systems, and supplementary food production systems. Traditional knowledge of Salar people associated with their HGs always contributes significantly to the local livelihood, food security, ornamental value, and biodiversity conservation. The cultivation of different plants in HGs for self-sufficiency has a long tradition in China’s rural areas, especially in some mountainous areas. However, Salar traditional HGs have not been described. The present paper aims to report the features of Salar HGs mostly based on agrobiodiversity and its ecosystem services. Methods The methods used in this work included semi-structured interviews and participatory observation. A total of 60 households in three townships, 9 villages were surveyed. There are 4–12 family members in each household, aged from 20 to 86 years old. The homestead size is between 200 and 1200 m2. Plant species cultivated in Salar HGs were identified according to Flora of China. Based on a comprehensive survey of Salar HGs and related to background data, we identified and characterized the most important services and functions provided by Salar HGs. Results According to primary production systems, there are 4 different types of Salar HGs, including ornamental focus, product focus, dual-purpose and multi-purpose. In total, 108 (excluding weeds and bonsai) plant species were recorded in Salar HGs, within 43 plant families. The most important and frequently used plants are Rosa chinensis, Armeniaca vulgar, Prunus salicina, and Ziziphus jujuba. About 4 to 32 plant species were recorded in each homegarden. We found that the Salar HGs, as a typical agroecosyste, prossess multiple servcices and functions that directly benefit households according to the field investigation. Conclusion This paper reveals the floristic diversity of Salar HGs. It presents useful information in the homegarden agroecosystem of Salar people, such as HG types and species diversity in Salar HGs. Ecosystem functions and services research suggested that the Salar HG agroecosystem provides agroecosystem services mainly related to supply and culture services. Salar HGs are important as food supplement resources, aesthetics symbol, and cultural spaces.


2019 ◽  
Author(s):  
Johannes Brändle ◽  
Norbert Kunert

Abstract Tree autotrophic respiratory processes, especially stem respiration or stem CO2 efflux (Estem), are important components of the forest carbon budget. Despite the efforts to investigate the controlling processes of Estem in the last years a considerable lack in our knowledge remains on the abiotic and biotic drivers affecting Estem dynamics. It has been strongly advocated that long-term measurements would shed light into those processes. The expensive scientific instruments needed to measure gas exchange has prevented from applying Estem measurements on a larger temporal and spatial scale. Here, we present an automated closed dynamic chamber system based on inexpensive and industrially broadly applied CO2 sensors reducing the costs for the sensing system to a minimum. The CO2 sensor was cross-calibrated with a commonly used gas exchange system in the laboratory and in the field, and we found very good accordance of these sensors. We tested the system under harsh tropical climatic conditions, characterized by heavy tropical rainfall events, extreme humidity, and temperatures, in a moist lowland forest in Malaysia. We recorded Estem of three Dyera costulata trees with our prototype over various days. The variation of Estem was large among the three tree individuals and varied by 7.5-fold. However, clear diurnal changes in Estem were present in all three tree individuals. One tree showed high diurnal variation in Estem and the relationship between Estem and temperature was characterized by a strong hysteresis. The large variations found within one single tree species highlights the importance of continuous measurement to quantify ecosystem carbon fluxes.


2012 ◽  
Vol 95 (3) ◽  
pp. 773-777 ◽  
Author(s):  
Leonardo Luiz Okumura ◽  
Luis Octávio Regasini Regasini ◽  
Daniara Cristina Fernandes ◽  
Dulce Helena Siqueira da Silva ◽  
Maria Valnice Boldrin Zanoni ◽  
...  

Abstract A fast, low-cost, convenient, and especially sensitive voltammetric screening approach for the study of the antioxidant properties of isoquercitrin and pedalitin from Pterogyne nitens is suggested in this work. These flavonoids were investigated for their redox properties using cyclic voltammetry in nonaqueous media using N,N-dimethylformamide and tetrabutylammonium tetrafluorborate as the supporting electrolyte, a glassy carbon working electrode, Ag|AgCl reference electrode, and Pt bare wire counter electrode. The comparative analysis of the activity of rutin has also been carried out. Moreover, combining HPLC with an electrochemical detector allowed qualitative and quantitative detection of micromolecules (e.g., isoquercitrin and pedalitin) that showed antioxidant activities. These results were then correlated to the inhibition of β-carotene bleaching determined by TLC autographic assay and to structural features of the flavonoids.


Sign in / Sign up

Export Citation Format

Share Document