Convective and microwave drying characteristics, energy requirement and color retention of dehydrated nettle leaves (Urtica diocia L.)

Author(s):  
Fuat Lule ◽  
Turhan Koyuncu

In this research, convective and microwave drying characteristics, energy requirement and color changes of nettle leaves (Urtica diocia L.) were reported. Samples of freshly harvested nettle leaves were dehydrated under three air temperatures of 50 °C, 60 °C and 70 °C and at three microwave power levels of PL-1, PL-2 and PL-3. Selected drying air velocity was 0.30 m/s for all temperatures. This is coming from the fact that it was understood from the preliminary studies that the temperature less than 50 °C and the air speed more than 0.30 ms-1 increase the drying time and energy requirement, extremely for these products. Nettle leaves were dehydrated from the initial moisture content of 320 (percentage dry basis) to a final moisture content of 7 % to 9 %. During convective drying experiments, product were weighted automatically by the balance per (5 to10) min. Data were transferred to the computer and processed by a software. During microwave drying, the product were weighted and data recorded manually per (15 to 60) min. The influence of drying method, drying air temperature and microwave power level have also been studied. Hunter L, a, b values system was also used to evaluate changes in total color difference (DE) on dried products. The results showed that convective drying air temperature and microwave oven power levels influenced the total drying time, total energy requirement, specific energy requirement and color difference for nettle leaves. The minimum specific energy requirement were determined as 6.95 kWhkg-1 and 23.63 kWhkg-1 for 70 °C and PL-2 respectively. 70 °C drying air temperature and PL-3 was found to yield better quality product in terms of color retention of Hunter L, a, b and DE. As a result, to reduce drying energy consumption and to keep better color retention, convective drying can be recommended for this application.

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
A. Waheed Deshmukh ◽  
Mahesh N. Varma ◽  
Chang Kyoo Yoo ◽  
Kailas L. Wasewar

Drying is a simultaneous heat and mass transfer energy intensive operation, widely used as a food preservation technique. In view of improper postharvest methods, energy constraint, and environmental impact of conventional drying methods, solar drying could be a practical, economical, and environmentally reliable alternative. In the present paper applicability of mixed mode solar cabinet dryer was investigated for drying of commercially important and export oriented ginger. Freshly harvested ginger slices were successfully dried from initial moisture content of 621.50 to 12.19% (d.b.) and their drying characteristics, quality parameters, and kinetics were evaluated. The results showed that present solar dryer could be successfully applied for drying of ginger in view of quality, reduced drying time, and zero energy requirement as compared to conventional open sun drying and convective drying techniques, respectively. Drying curves showed that drying occurred in falling rate period and no constant period was observed. The effective moisture diffusivity was determined by using Fick’s second law and found to be 1.789×10-9 m2/s. The drying data was fitted to five thin layer drying models and compared using statistical criteria. Page model was found to be most suitable to describe the drying kinetics of ginger in solar dryer under natural convection among the tested models.


2021 ◽  
Vol 11 (7) ◽  
pp. 2918
Author(s):  
Mudtorlep Nisoa ◽  
Karaket Wattanasit ◽  
Arlee Tamman ◽  
Yaowarat Sirisathitkul ◽  
Chitnarong Sirisathitkul

The potential of microwave drying in the production of rehydrated foods is demonstrated with stink beans (Parkia speciosa), smelly legumes of Africa and Asia. Compared to stink beans dehydrated by convective drying and freeze drying, the microwave products exhibit higher moisture contents, but the distribution of microscopic pores leads to good rehydration characteristics. Dehydration by microwave drying is also achieved within a much shorter period than that commonly used in freeze drying. The dehydration time can be further reduced to 6 h comparable to convective drying, and the moisture content is dropped to 11% by decreasing the pressure during microwave drying. However, the rehydration time remains around 65 min for products from both ambient and low-pressure (400 Pa) microwave drying. In rehydration, the period is successfully reduced to 30 min by increasing the water temperature to 70 °C. The results indicate that microwave drying does not affect the value of crude protein and rehydrated products are comparable to fresh stink beans. From these findings, the microwave drying technique is an applicable technology for both manufacturers and consumers, with acceptable drying time and rehydration characteristics.


2006 ◽  
Vol 2 (1) ◽  
pp. 51-72
Author(s):  
István Patay ◽  
Virág Sándor

Clod crushing is a principal problem with soils of high clay content. Therefore, there is a need for determining the conditions for clod breaking and clod crushing. The objective of the work was to develop a special purpose tool for single clod breaking both by rigid support of the clod and by a single clod supported by soil and to develop a machine for clod crushing. Furthermore, the purpose was to determine the relationship between the specific energy requirement for clod crushing in the function of soil plasticity and the soil moisture content by the means of the developed tool and machine. The main result of the experiments is summarized in a 3D diagram where the specific energy requirement for soil clod crushing is given in the function of the moisture content and the plasticity index for different clay soils.


2013 ◽  
Vol 724-725 ◽  
pp. 296-299
Author(s):  
Chun Xiang Chen ◽  
Xiao Qian Ma ◽  
Xiao Cong Li ◽  
Wei Ping Qin

To find out an alternative of coal saving, a kind of microalgae, Chlorella vulgaris (C. vulgaris) which is widespread in fresh water was studied by digital blast drying system. The effect of the moisture content, drying thickness and temperature on the drying process of C. vulgaris were investigated. The results indicated that when the drying temperature is high, the moisture content is low and the material thickness is small, the drying time is short. The drying process of C.vulgaris can be divided into two stages, and the mass loss is mainly occurred in the second stage . The results will provide guidance for design of drying process and dryer of microalgae.


Author(s):  
Dat Q Tran

Dried vegetables are considered convenient for storage, transportation and preservation. The different drying techniques could influence the quality of resulting products. This study aimed to evaluate the effects of three distinguish drying methods as hot-air drying, foam-mat drying and microwave drying on the color retention and chlorophyll of green vegetables powder. Fresh spinach(Spinacia oleraceaL.), celery (Apium graveolensL.), Malabar spinach (Basella albaL.) were dried by different methods: hot air at 60oC, foam-mat at 60oC and microwave at 270 W until the samples reached approximately 9% of moisture content (wb). The drying time of the dried samples by microwave, foam-mat and hot-air method were 60, 210 and 240 min, respectively. Foam-mat dried vegetables were found to have the best quality in terms of color and the residual chlorophyll content. The findings suggest that foam-mat drying is promising in dried vegetable processing


Author(s):  
Andrea V Mahn ◽  
Paola Antoine ◽  
Alejandro Reyes

Drying kinetics of broccoli florets in a tunnel dryer was studied. Effective moisture diffusivity (Deff) and activation energy for moisture diffusion (E0) were estimated. The effect of air temperature, air flow rate and particle size on antioxidant capacity, greenness and texture were calculated through a 23 factorial design. Air flow rate and temperature significantly affected drying time. Deff fluctuated between 2.82 x 10-10 and 2.00 x 10-9 (m2/s), and E0 was around 42 KJ/mol, agreeing with values reported in literature. The maximum antioxidant activity was obtained at 60°C, air flow rate of 4 m/s and 1.5 cm particle diameter, resulting in a 70 percent reduction in free radical scavenging ability and a 29 percent increase in total reductive capability. Air temperature had significant effect on greenness, and air flow rate significantly affected texture. The optimization of convective drying of broccoli allows maximizing antioxidant activity and minimizing cost by saving energy and time.


Foods ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 101 ◽  
Author(s):  
Senadeera ◽  
Adiletta ◽  
Önal ◽  
Di Matteo ◽  
Russo

Drying characteristics of persimmon, cv. “Rojo Brillante”, slabs were experimentally determined in a hot air convective drier at drying temperatures of 45, 50, 55, 60, and 65 °C at a fixed air velocity of 2.3 m/s. It was observed that the drying temperature affected the drying time, shrinkage, and colour. Four empirical mathematical models namely, Enderson and Pabis, Page, Logarithmic, and Two term, were evaluated in order to deeply understand the drying process (moisture ratio). The Page model described the best representation of the experimental drying data at all investigated temperatures (45, 50, 55, 60, 65 °C). According to the evaluation of the shrinkage models, the Quadratic model provided the best representation of the volumetric shrinkage of persimmons as a function of moisture content. Overall, higher drying temperature (65 °C) improved the colour retention of dried persimmon slabs.


2016 ◽  
Vol 12 (4) ◽  
pp. 395-409 ◽  
Author(s):  
Wittawat Trirattanapikul ◽  
Singhanat Phoungchandang

Abstract Gac fruit (Momordica cochinchinensis L.) pulp is high in carotenoids and fiber; however, it is discarded during process. Both maturity stages of matured gac fruit could be used in the drying experiments. Gac fruit pulp was dried by different drying methods including tray drying (40–60 °C), heat pump-assisted dehumidified drying (40–60 °C), microwave drying (450–900 W), mixed-mode solar drying and freeze drying. The Modified Henderson model presented the best fit of desorption isotherms. New model proposed was the best drying model. Quality evaluation by β-carotene, lycopene, lutein, total phenolics and antioxidant activity revealed that heat pump-assisted dehumidified drying at 60 °C provided the highest lutein, total phenolics and antioxidant activity and could reduce drying time by 25 % and increased lutein, total phenolics and antioxidant activity by 12.6 %, 32.0 % and 0.3 %, respectively and is more promising drying method for gac fruit pulp.


2012 ◽  
Vol 45 (2) ◽  
pp. 5-14 ◽  
Author(s):  
R. Chayjan ◽  
H. Agha-Alizade ◽  
H. Barikloo ◽  
B. Soleymani

Modeling Some Drying Characteristics of Cantaloupe Slices This study investigated thin layer drying of cantaloupe slices under different drying conditions with initial moisture content about 18.53 (d.b.). Air temperature levels of 40, 50, 60 and 70°C were applied in drying of samples. Fick's second law in diffusion was applied to compute the effective moisture diffusivity (Deff) of cantaloupe slices. Minimum and maximum values of Deff were 4.05x10-10 and 1.61x10-9 m2/s, respectively. Deff values increased as the input air temperature was increased. Activation energy values of cantaloupe slices were found between 30.43 and 36.23 kJ/mol for 40°C to 70°C, respectively. The specific energy consumption for drying cantaloupe slices was calculated at the boundary of 1.01x105 and 9.55x105 kJ/kg. Increasing in drying air temperature in different air velocities led to increase in specific energy value. Results showed that applying the temperature of 70°C is more effective for convective drying of cantaloupe slices. The aforesaid drying parameters are important to select the best operational point of a dryer and to precise design of the system.


2017 ◽  
Vol 6 (1) ◽  
Author(s):  
Xuefeng Liao ◽  
Guo Chen ◽  
Qianqian Liu ◽  
Jin Chen ◽  
Jinhui Peng

AbstractIn the present study, the moisture of high titanium slag was chosen as the research object. Taking advantage of selective heating of microwave and the specific inductive capacity of water, the drying experiment of high titanium slag using microwave heating have been carried out. The results revealed that the presence of moisture in the form of high titanium slag was adsorbed water, and the wet sample possesses excellent wave-adsorbing performance; the bed depth preferred was no larger than 10 mm, with moisture content at around 3%. The microwave drying process was divided into two stages: the constant-stage and the deceleration-stage. The optimum conditions were identified to be microwave power of 700 W, sample mass of 200 g, bed depth of 10 mm and drying time of 50 s. The dehydration extent can reach 90% and moisture content remains at 0.3% under the optimum conditions. The demonstration of microwave drying techniques can be applied effectively and efficiently into the treatment processing of drying of the raw materials of metallurgy and chemical industry with the theoretical and scientific basis.


Sign in / Sign up

Export Citation Format

Share Document