scholarly journals Analyse De L’impact Du Changement De La Couverture Végétale Sur La Pluie Et La Température De Surface Au Sénégal

2017 ◽  
Vol 13 (29) ◽  
pp. 270
Author(s):  
Ibrahima Diba ◽  
Moctar Camara

This work aims at examining the potential impacts of vegetation change (reforestation) of the Sahel-Sahara interface on the intra-seasonal and interannual variability of the rainfall and surface temperature over Senegal using the RegCM4 model. Two runs were performed from 1990 to 2009 with a spatial resolution of 50 km (0.44 °): the standard version of the RegCM4 model (control version) and the reforested one (named RegCM4_REFORESTATION). The impact of the reforestation is to decrease the surface temperature over Senegal in summer (JJAS). This decrease could be partly due to a decrease of the sensible heat flux over the southern and central Senegal and a strong increase of the latent heat flux. The reforestation also tends to increase the rainfall over the whole country and particularly in the Southwest. This rainfall increase which can also create an evaporative cooling, is consistent with the decrease of the surface temperature. The analysis of the annual cycle over three domains of Senegal shows that the reforestation tends to strengthen the low-levels humidity of the atmosphere from January to December especially during the summer period in the North and in the center of the country. The surface temperature presents two maxima in April-May and October-November and a minimum during the summer. The reforestation has a cooling impact during the whole year (particularly in the summer) and over the center and the northern part of Senegal. At the interannual timescale, the reforestation modifies significantly the rainfall by generally increasing it. However, there are years in which this trend is not respected and this translates into a weak correlation coefficient in the South of the country. This rainfall increase may translates into extreme hydroclimatic events such as floods. This work can be considered as a support for the Senegalese policymakers for the better planning of the management of adverse potential effects (such as floods, drought, heat waves, etc) of the Sahel-Sahara greening effort.

2019 ◽  
Vol 11 (11) ◽  
pp. 1347 ◽  
Author(s):  
Jinxin Yang ◽  
Massimo Menenti ◽  
E. Scott Krayenhoff ◽  
Zhifeng Wu ◽  
Qian Shi ◽  
...  

Sensible heat exchange has important consequences for urban meteorology and related applications. Directional radiometric surface temperatures of urban canopies observed by remote sensing platforms have the potential to inform estimations of urban sensible heat flux. An imaging radiometer viewing the surface from nadir cannot capture the complete urban surface temperature, which is defined as the mean surface temperature over all urban facets in three dimensions, which includes building wall surface temperatures and requires an estimation of urban sensible heat flux. In this study, a numerical microclimate model, Temperatures of Urban Facets in 3-D (TUF-3D), was used to model sensible heat flux as well as radiometric and complete surface temperatures. Model data were applied to parameterize an effective resistance for the calculation of urban sensible heat flux from the radiometric (nadir view) surface temperature. The results showed that sensible heat flux was overestimated during daytime when the radiometric surface temperature was used without the effective resistance that accounts for the impact of wall surface temperature on heat flux. Parameterization of this additional resistance enabled reasonably accurate estimates of urban sensible heat flux from the radiometric surface temperature.


Author(s):  
Abedeh Abdolghafoorian ◽  
Paul A. Dirmeyer

AbstractThe interactions between land and atmosphere (with terrestrial and atmospheric coupling segments) play a significant role in weather and climate. A predominant segment of land-atmosphere (L-A) feedbacks is the coupling between soil moisture (SM) and surface heat fluxes, the terrestrial coupling leg. The lack of high-quality long-term globally distributed observations, however, has hindered a robust, realistic identification of the terrestrial leg strength on a global scale. This exploratory study provides insight into how SM signals are translated into surface flux signals through the construction of a global depiction of the terrestrial leg from several recently developed global, gridded, observationally- and satellite-based data sets. The feasibility of producing global gridded estimates of L-A coupling metrics is explored. Five weather and climate models used for subseasonal to seasonal forecasting are confronted with the observational estimates to discern discrepancies that may affect their ability to predict phenomena related to L-A feedbacks, such as drought or heat waves. The terrestrial feedback leg from observations corroborates the “hot spots” of L-A coupling found in modeling studies, but the variances in daily time series of surface fluxes differ markedly. Better agreement and generally higher confidence are seen in metrics using latent heat flux than sensible heat flux. Observational metrics allow for clear stratification of model fidelity that is consistent across seasons, despite observational uncertainty. The results highlight the impact of SM on partitioning available surface energy and illustrate the potential of global observationally-based data sets for the assessment of such relationships in weather and climate models.


2017 ◽  
Vol 18 (1) ◽  
pp. 265-284 ◽  
Author(s):  
Helene B. Erlandsen ◽  
Ingjerd Haddeland ◽  
Lena M. Tallaksen ◽  
Jørn Kristiansen

Abstract A seasonal snow cover, expansive forests, a long coast line, and a mountainous terrain are features of Norway’s geography. Forests, ground snow, and sea surface temperature (SST) vary on time scales relevant for weather forecasting and climate projections. The mapping and model parameterization of these features vary in novelty, accuracy, and complexity. This paper investigates how increasing the influence of each of these features affects southern Norway’s surface energy and water balance in a regional climate model (WRF). High-resolution (3.7 km) experimental runs have been conducted over two consecutive hydrological years, including 1) heightening the boreal forest line (the Veg experiment), 2) increasing ground snow by altering the snow/rain criterion (the Snow experiment), or 3) increasing the SST (the SST experiment). The Veg experiment led to an increase in annual net radiation in the study area (by 3 W m−2), largely balanced out by an increase in latent heat flux. Moisture recycling increased, leaving only a negligible decrease in annual runoff. Surface temperature increased by 0.1°C, and its seasonal variability was dampened. Significant changes were also found outside the area of vegetation change. Snow decreased by 1.5 W m−2, despite slight increases in downward shortwave and longwave radiation. Both sensible heat flux and surface temperature decreased (by 1.3 W m−2 and 0.2°C, respectively), but the annual water balance remained mostly unchanged. The SST experiment led to increased downward and upward longwave radiation. Surface temperature was raised by 0.2°C. Advected oceanic moisture and thus both precipitation and runoff increased (by 2.5% and 2.8%, respectively).


2021 ◽  
Vol 13 (11) ◽  
pp. 6106
Author(s):  
Irantzu Alvarez ◽  
Laura Quesada-Ganuza ◽  
Estibaliz Briz ◽  
Leire Garmendia

This study assesses the impact of a heat wave on the thermal comfort of an unconstructed area: the North Zone of the Island of Zorrotzaurre (Bilbao, Spain). In this study, the impact of urban planning as proposed in the master plan on thermal comfort is modeled using the ENVI-met program. Likewise, the question of whether the urbanistic proposals are designed to create more resilient urban environments is analyzed in the face of increasingly frequent extreme weather events, especially heat waves. The study is centered on the analysis of temperature variables (air temperature and average radiant temperature) as well as wind speed and relative humidity. This was completed with the parameters of thermal comfort, the physiological equivalent temperature (PET) and the Universal Temperature Climate Index (UTCI) for the hours of the maximum and minimum daily temperatures. The results demonstrated the viability of analyzing thermal comfort through simulations with the ENVI-met program in order to analyze the behavior of urban spaces in various climate scenarios.


2005 ◽  
Vol 9 (6) ◽  
pp. 607-613 ◽  
Author(s):  
J. Roberts ◽  
P. Rosier ◽  
D. M. Smith

Abstract. The impact on recharge to the Chalk aquifer of substitution of broadleaved woodland for pasture is a matter of concern in the UK. Hence, measurements of energy balance components were made above beech woodland and above pasture, both growing on shallow soils over chalk in Hampshire. Latent heat flux (evaporation) was calculated as the residual from these measurements of energy balances in which sensible heat flux was measured with an eddy correlation instrument that determined fast response vertical wind speeds and associated temperature changes. Assessment of wind turbulence statistics confirmed that the eddy correlation device performed satisfactorily in both wet and dry conditions. There was excellent agreement between forest transpiration measurements made by eddy correlation and stand level tree transpiration measured with sap flow devices. Over the period of the measurements, from March 1999 to late summer 2000, changes in soil water content were small and grassland evaporation and transpiration estimated from energy balance-eddy flux measurements were in excellent agreement with Penman estimates of potential evaporation. Over the 18-month measurement period, the cumulative difference between broadleaved woodland and grassland was small but evaporation from the grassland was 3% higher than that from the woodland. In the springs of 1999 and 2000, evaporation from the grassland was greater than that from the woodland. However, following leaf emergence in the woodland, the difference in cumulative evaporation diminished until the following spring.


2005 ◽  
Vol 18 (16) ◽  
pp. 3217-3228 ◽  
Author(s):  
D. W. Shin ◽  
S. Cocke ◽  
T. E. LaRow ◽  
James J. O’Brien

Abstract The current Florida State University (FSU) climate model is upgraded by coupling the National Center for Atmospheric Research (NCAR) Community Land Model Version 2 (CLM2) as its land component in order to make a better simulation of surface air temperature and precipitation on the seasonal time scale, which is important for crop model application. Climatological and seasonal simulations with the FSU climate model coupled to the CLM2 (hereafter FSUCLM) are compared to those of the control (the FSU model with the original simple land surface treatment). The current version of the FSU model is known to have a cold bias in the temperature field and a wet bias in precipitation. The implementation of FSUCLM has reduced or eliminated this bias due to reduced latent heat flux and increased sensible heat flux. The role of the land model in seasonal simulations is shown to be more important during summertime than wintertime. An additional experiment that assimilates atmospheric forcings produces improved land-model initial conditions, which in turn reduces the biases further. The impact of various deep convective parameterizations is examined as well to further assess model performance. The land scheme plays a more important role than the convective scheme in simulations of surface air temperature. However, each convective scheme shows its own advantage over different geophysical locations in precipitation simulations.


Atmosphere ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 458
Author(s):  
Guo Zhang ◽  
Fei Chen ◽  
Yueli Chen ◽  
Jianduo Li ◽  
Xindong Peng

The water budget and energy exchange over the Tibetan Plateau (TP) region play an important role on the Asian monsoon. However, it is not well presented in the current land surface models (LSMs). In this study, uncertainties in the Noah with multiparameterization (Noah-MP) LSM are assessed through physics ensemble simulations in three sparsely vegetated sites located in the central TP. The impact of soil organic matter on energy flux and water cycles, along with the influence of uncertainties in precipitation are explored using observations at those sites during the third Tibetan Plateau Experiment from 1August2014 to31July2015. The greatest uncertainties are in the subprocesses of the canopy resistance, soil moisture limiting factors for evaporation, runoff (RNF) and ground water, and surface-layer parameterization. These uncertain subprocesses do not change across the different precipitation datasets. More precipitation can increase the annual total net radiation (Rn), latent heat flux (LH) and RNF, but decrease sensible heat flux (SH). Soil organic matter enlarges the annual total LH by ~26% but lessens the annual total Rn, SH, and RNF by ~7%, 7%, and 39%, respectively. Its effect on the LH and RNF at the Nagqu site, which has a sand soil texture type, is greater than that at the other two sites with sandy loam. This study highlights the importance of precipitation uncertainties and the effect of soil organic matter on the Noah-MP land-model simulations. It provides a guidance to improve the Noah-MP LSM further and hence the land-atmosphere interactions simulated by weather and climate models over the TP region.


2010 ◽  
Vol 4 (Special Issue 2) ◽  
pp. S49-S58 ◽  
Author(s):  
J. Brom ◽  
J. Procházka ◽  
A. Rejšková

The dissipation of solar energy and consequently the formation of the hydrological cycle are largely dependent on the structural and optical characteristics of the land surface. In our study, we selected seven units with different types of vegetation in the Mlýnský and Horský catchments (South-Eastern part of the Šumava Mountains, Czech Republic) for the assessment of the differences in their functioning expressed through the surface temperature, humidity, and energy dissipation. For our analyses, we used Landsat 5 TM satellite data from June 25<SUP>th</SUP>, 2008. The results showed that the microclimatic characteristics and energy fluxes varied in different units according to their vegetation characteristics. A cluster analysis of the mean values was used to divide the vegetation units into groups according to their functional characteristics. The mown meadows were characterised by the highest surface temperature and sensible heat flux and the lowest humidity and latent heat flux. On the contrary, the lowest surface temperature and sensible heat flux and the highest humidity and latent heat flux were found in the forest. Our results showed that the climatic and energetic features of the land surface are related to the type of vegetation. We state that the spatial distribution of different vegetation units and the amount of biomass are crucial variables influencing the functioning of the landscape.


2005 ◽  
Vol 6 (6) ◽  
pp. 941-953 ◽  
Author(s):  
Wade T. Crow ◽  
Fuqin Li ◽  
William P. Kustas

Abstract The treatment of aerodynamic surface temperature in soil–vegetation–atmosphere transfer (SVAT) models can be used to classify approaches into two broad categories. The first category contains models utilizing remote sensing (RS) observations of surface radiometric temperature to estimate aerodynamic surface temperature and solve the terrestrial energy balance. The second category contains combined water and energy balance (WEB) approaches that simultaneously solve for surface temperature and energy fluxes based on observations of incoming radiation, precipitation, and micrometeorological variables. To date, few studies have focused on cross comparing model predictions from each category. Land surface and remote sensing datasets collected during the 2002 Soil Moisture–Atmosphere Coupling Experiment (SMACEX) provide an opportunity to evaluate and intercompare spatially distributed surface energy balance models. Intercomparison results presented here focus on the ability of a WEB-SVAT approach [the TOPmodel-based Land–Atmosphere Transfer Scheme (TOPLATS)] and an RS-SVAT approach [the Two-Source Energy Balance (TSEB) model] to accurately predict patterns of turbulent energy fluxes observed during SMACEX. During the experiment, TOPLATS and TSEB latent heat flux predictions match flux tower observations with root-mean-square (rms) accuracies of 67 and 63 W m−2, respectively. TSEB predictions of sensible heat flux are significantly more accurate with an rms accuracy of 22 versus 46 W m−2 for TOPLATS. The intercomparison of flux predictions from each model suggests that modeling errors for each approach are sufficiently independent and that opportunities exist for improving the performance of both models via data assimilation and model calibration techniques that integrate RS- and WEB-SVAT energy flux predictions.


Sign in / Sign up

Export Citation Format

Share Document