Analysis of the inertial propulsion concept

Author(s):  
A. A. Sabirzyanov ◽  

In this paper, an inertial device of the simplest design is proposed, which allows us to visually analyze the principle of its operation. The device is a radio-controlled car placed on the bottom of a long light cardboard box. The box is on the table. Using the remote control, the car accelerates and collides with one of the walls. On impact, the box moves across the table. Next, the car is taken to the opposite wall by the remote control without a collision. Then the process is repeated, as a result of which the device jerks along the table in one direction (in the example - to the right). The advantage of this method of control is that it is contactless, the disadvantage is that it is manual. In the framework of classical mechanics, the average speed of the box movement on the table is calculated. It depends on the ratio of the mass of the car and the box, the proportion of weight that falls on the driving wheels, the coefficient of friction between the wheels and the bottom of the box, the coefficient of friction between the box and the table, the difference in the length of the box and the car. It is shown that the average speed with a decrease in the friction force on the side of the support should first increase, and with a further decrease in friction - decrease. A condition is found under which the dependence of the average velocity on the friction force has a maximum.

Author(s):  
Yutaro Kosugi ◽  
Tomoaki Iwai ◽  
Yutaka Shokaku ◽  
Naoya Amino

In recent years, porous rubber has been used as a tread matrix for studless tires. It is said that the pores in the tread rubber remove water between the tire and the wet road surface; however, the water removal is not sufficiently well understood. In this study, a rotating rubber specimen was rubbed against a mating prism to observe the contact surface. The friction force was also measured simultaneously with observation of contact surface. The water entering the pores was distinguished by the continuity method. As the result of these experiments, the coefficient of friction for rubber having pores on the surface was found to be larger than that of rubber without pores. Moreover, the difference in the coefficient of friction for rubber specimens with and without pores tended to be larger at lower sliding speeds. No water entered pores 3mm or less in diameter at any sliding speed in this experiment. An experiment to make the rubber specimen collide with the mating prism was conducted since actual tires seem to be deformed by the vehicle weight, such that the tire surface might contact the road collisionally. In the resulting collision experiment, the water did enter pores 3mm in diameter.


1971 ◽  
Vol 93 (4) ◽  
pp. 1225-1228 ◽  
Author(s):  
W. L. Starkey ◽  
T. G. Foster ◽  
S. M. Marco

A new design parameter, friction-instability, is defined in this paper. Friction-instability is a variation in the coefficient of friction which may occur at any time during the life of a brake lining. A friction-index is defined which measures this variation. A lining which has a high friction index may tend to cause an automobile to swerve either to the right or to the left. A unique experimental facility is described by means of which the friction-instability characteristics of brake linings can be measured. Test results using this facility are presented and interpreted. The friction-index is proposed as a new parameter which should be taken into consideration when brakes are designed and, developed. This index should be particularly useful as a quality control device to insure that machines which use mass-produced braking systems will perform in a safe and effective manner.


1958 ◽  
Vol 36 (5) ◽  
pp. 599-610 ◽  
Author(s):  
C. D. Niven

The friction on ice of some small inflated rubber tires was measured on a turntable in a cold room. When rolling-friction force was plotted against load, the relation was either linear or slightly curved away from the load axis; such curvature implies that Thirion's Law does not hold for rolling friction. On the other hand when sliding-friction force was plotted against load the curvature was toward the load axis as would be expected if Thirion's Law applied. The coefficient of friction can go as low as 0.01 or even lower for a hard-pumped tire when the temperature is near 0 °C, but at −1 °C. rolling friction on dry ice is quite appreciable. The results refer only to measurements at very slow speed.


The coefficient of friction of surfaces lubricated under boundary conditions may be profoundly affected by such factors as the degree of working of the substrate material, the nature of the oxide film and the degree of roughness of the surface. Experiments are described wherein the frictional behaviour of surfaces of stainless steel specimens prepared in various ways was compared. The worked surface layers in these particular experiments appear to increase the value of the coefficient of friction, but the effect of surface texture is of predominant importance. The effect of different oxide films is best illustrated by reference to pure aluminium, the surface of which has been oxidized under different environmental conditions. The constitution of the oxide film formed is modified with a consequent effect on boundary friction. When the friction of rough and smooth surfaces is compared, the difference in behaviour appears to be qualitative rather than quantitative.


1994 ◽  
Vol 67 (5) ◽  
pp. 797-805 ◽  
Author(s):  
Kunio Mori ◽  
Satoshi Kaneda ◽  
Kentaro Kanae ◽  
Hidetoshi Hirahara ◽  
Yoshiyuki Oishi ◽  
...  

Abstract The effects of vulcanizate and slider surface free energy—as well as the adhesion force (P) between them—on friction the force (F) and the coefficient of friction (μ) has been investigated. SBR and NBR vulcanizates were prepared using three molds differing in surface free energy. The mold with a high surface free energy gave a vulcanizate surface possessing polar groups. The mold with low surface energy gave a vulcanizate surface with many nonpolar groups. The coefficient of friction increased with the surface free energy of SBR and NBR vulcanizates. With SBR vulcanizate (surface free energy, 31.3 mJ·m−2) and teflon slider (surface free energy, 28.1 mJ·m−2) combination having the least surface free energy, the coefficient of friction was constant at greater than a 0.2N load. With vulcanizates and an aluminum slider with high surface free energy, friction force could be detected even at zero load because of the adhesion force at the interface. Friction force increased linearly with adhesion force between vulcanizates and sliders when the physical properties of the vulcanizates and net work chain density were constant. The present results clearly demonstrate the contribution of adhesion force to the friction of vulcanizates.


Author(s):  
R. G. Tyler

Tests were carried out on a brake lining damper intended to dissipate energy between parts of a structure having relative motion during earthquake attack. The device operates by the sliding of a steel plate clamped against a brake lining. Hysteresis loops for the damper showed peaks for the breakaway friction force, when the value of the force was up to twice that obtained for continuous movement. Also values of the coefficient of friction derived from the test were lower than those quoted elsewhere. Further testing is required prior to the use of the method in structures.


1987 ◽  
Vol 31 (11) ◽  
pp. 1206-1210 ◽  
Author(s):  
Demetrios Karis

Using a within-subjects design, performance on a continuous cursor control task was measured in three conditions: no gloves, flight gloves, and a combination of three gloves worn simultaneously for chemical, biological, or radiological (CBR) protection. Twelve subjects used their left ring finger on a two-axis force controller to move a cursor on a CRT. After centering it over one of eight possible targets, they depressed the controller to designate the target and end a trial. Time to acquire the target and accuracy in centering the cursor over the target were recorded. Subjects had faster acquisition times in the two glove conditions with no increase in errors, although only the difference between the CBR gloves and no-gloves was statistically significant. My explanation for these findings is that the thickness of the gloves may have improved the fit of the fingertip in the force controller, which was concave, and also prevented the finger from slipping by increasing the coefficient of friction between the finger and the controller.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4037 ◽  
Author(s):  
Trzepiecinski ◽  
Kubit ◽  
Slota ◽  
Fejkiel

This article presents the results of an experimental investigation of the frictional resistance arising in a drawbead during sheet metal forming. The frictional characterization of DC04 deep drawing quality steels commonly used in the automotive industry is carried out using a friction simulator. The effects of some parameters of the friction process on the value of the coefficient of friction have been considered in the experimental investigations. The friction tests have been conducted on different strip specimens, lubrication conditions, heights of drawbead and specimen orientations in relation to the sheet rolling direction. The results of drawbead simulator tests demonstrate the relationship that the value of the coefficient of friction of the test sheets without lubrication is higher than in the case of lubricated sheets. The lubricant reduces the coefficient of friction, but the effectiveness of its reduction depends on the drawbead height and lubrication conditions. Moreover, the effectiveness of the reduction of the coefficient of friction by the lubricant depends on the specimen orientation according to the sheet rolling direction. In the drawbead test, the specimens oriented along the rolling direction demonstrate a higher value of coefficient of friction when compared to the samples cut transverse to the rolling direction. The smaller the width of the specimen, the lower the coefficient of friction observed. The difference in the coefficient of friction for the extreme values of the widths of the specimens was about 0.03–0.05. The use of machine oil reduced the coefficient of friction by 0.02–0.03 over the whole range of drawbead heights. Heavy duty lubricant even reduced the frictional resistances by over 50% compared to dry friction conditions. The effectiveness of friction reduction by machine oil does not exceed 30%.


2018 ◽  
Vol 19 (6) ◽  
pp. 790-794
Author(s):  
Mirosław Wolski ◽  
Tomasz Piątkowski ◽  
Przemysław Osowski

In this paper presents friction coefficient determination method between scraped object's material and fence material, determined directly on the conveyor belt, which then is introduced in the FEM program (LSDyna) for simulation of the scraping process in the automated sorting plant. In this case, the necessity of using an additional laboratory stand to determine the coefficient of friction is omitted. Due to the existing balance of friction forces, the model of the phenomenon can be treated as static, therefore the measurement is very simple and does not depend on time.


2014 ◽  
Vol 566 ◽  
pp. 365-370
Author(s):  
Fei Qian ◽  
Hai Jun Wu ◽  
Feng Lei Huang ◽  
Ai Guo Pi ◽  
Xiu Fang Ma

In this paper, a model of the friction coefficient in the high-speed penetration process has been used, which considers the micro-asperities of the projectile surface, the adiabatic shearing and the heat conduction on the nose of projectile. It also considers that the coefficient of friction is a function of the sliding velocity. Then, an analytical model of mass loss based on the coefficient of friction and the revised dynamic spherical cavity expansion theory of the concrete material is constructed. An analytical estimate for the work done by friction force in the penetration could be calculated and the evaluation of mass loss of projectile could also be calculated by the heat translated from the work done by friction force. Finally, a comparative analysis between the calculated data and the experimental data of mass loss is done.


Sign in / Sign up

Export Citation Format

Share Document